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Abstract—Database-driven cognitive radio has been well rec-
ognized as an efficient way to reduce interference between Prima-
ry Users (PUs) and Secondary Users (SUs). In database-driven
cognitive radio, PUs and SUs must provide their locations to
enable dynamic channel allocation, which raises location privacy
breach concern. Previous studies only focus on unilateral privacy
preservation, i.e., only PUs’ or SUs’ privacy is preserved. In this
paper, we propose to protect bilateral location privacy of a PU and
an SU. The main challenge lies in how to coordinate the PU and
SU to maximize their utility provided that their location privacy is
protected. We first introduce a quantitative method to calculate
both PU’s and SU’s location privacy, and then design a novel
privacy preserving Utility Maximization protocol (UMax). UMax
allows for both PU and SU to adjust their privacy preserving
levels and optimize transmit power iteratively to achieve the
maximum utility. Through extensive evaluations, we demonstrate
that our proposed mechanism can efficiently increase the utility
of both PU and SU while preserving their location privacy.

I. INTRODUCTION

Cognitive radio networks have been well recognized as
an efficient way to increase the spectrum utilization and thus
alleviate the spectrum scarcity issue [1][2][3]. In cognitive
radio networks, there are two types of users: Primary Users
(PUs) and Secondary Users (SUs). PUs have the priority to
access the spectrum since they have registered a chunk of
spectrum from the spectrum management entity such as FCC
while SUs are allowed to access PUs’ channels only when the
interested channels are vacant.

To enable dynamic channel access, SUs should be aware
of which channels are locally available for reuse. There are
mainly two ways of achieving this: 1) spectrum sensing and 2)
database querying. Spectrum sensing method requests SUs to
be equipped with sensors to detect the locally available chan-
nels [4][5][6][7]. Interference may occur when detection sen-
sors output false results, which may be caused by obstruction
and channel fading. Database querying method requires SUs
to provide their accurate locations to a centralized database
[8][9][10]. In such a way, SUs can facilely figure out locally
available channels and thus efficiently avoid interference by
querying a database, which maintains an up-to-date spectrum
availability repository.

Since SUs’ locations are exposed to enable efficient chan-
nel allocation in database-driven cognitive radio networks, this
raises location privacy breach risk of SUs. Furthermore, the
response from database contains information relevant to the

distance of PUs and a queried SU, a malicious SU may infer
PUs’ locations through seemingly innocuous multiple database
queries. The potential privacy breach risk of both PU and
SU has been an obstacle to promote database-driven cognitive
radio networks.

The previous studies on the location privacy issue in
database-driven cognitive radio networks concern only about
unilateral privacy, i.e., they assume that one party (PUs or SUs)
is trustworthy and try to preserve the other’s privacy [11][12].
Further, they fail to quantify the Privacy Preserving Level (P-
PL) of PUs and SUs, making it difficult to analyze the tradeoff
between PPL and spectrum utilization. As aforementioned,
both PUs’ and SUs’ location privacy could be potentially
breached and thus should be preserved simultaneously. Simply
applying previous results to protect the privacy of PUs and SUs
independently will suffer severe utility loss for both parties.
As rational users, both parties intend to maximize their PPL
to efficiently thwart the attacker’s threat. However, PPL and
utility are always a paradox, in the sense that unrestricted
increase of PPL will result in no available spectrum for SUs
to reuse. Therefore, the bilateral location privacy issue should
be jointly addressed, in which PUs and SUs can adjust their
PPL in order to maximize their utility. Clearly, the traditional
two-step database access protocol, i.e. query and response, is
impossible for PUs and SUs to adjust their PPL due to the
lack of side information about the distance between PUs and
the queried SUs.

To address such a challenging issue, we adopt the concept
of differential privacy [13] to simultaneously preserve PUs’
and SUs’ privacy. We consider the case where one PU and
one SU are involved. Then we design a quantitative privacy-
preserving mechanism which is flexible for the PU and SU to
adjust their PPL. With the mechanism framework, we proceed
to propose a novel privacy preserving Utility Maximization
protocol (UMax) that allows both PU and SU to adjust their
PPL to achieve the maximum utility. In UMax, the PU and
SU exchange information to decide their optimal PPL in
an iterative way. Firstly, the SU chooses a relatively large
expected PPL and sends it to database together with an
obfuscated location, which is decided by PPL. Secondly, based
on SU’s expected information, the PU can decide its optimal
PPL through solving an optimization problem as depicted in
Section IV. Then the database calculates the SU’s expected
available transmitting radius and responds it to SU. Thirdly,
SU adjusts its PPL to achieve a higher utility based on the
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PU’s feedback, then resends it to the database. Finally, the PU
decides the maximum transmit power that the SU can adopt
to access the spectrum.

The main contributions of this paper are summarized as
follows:

1) To the best of our knowledge, this is the first work
that simultaneously considers the location privacy-
preserving issue for both PU and SU.

2) We design a quantitative mechanism to preserve both
PU’s and SU’s location privacy simultaneously, which
is based on the concept of differential privacy.

3) Based on the mechanism framework, we further pro-
pose a novel database access protocol which allows
PU and SU to adjust their privacy preserving levels.
This new protocol consists of four steps, through
which, the queried SU and PU can adjust their privacy
preserving levels and optimize their transmit power
iteratively to achieve the maximum utility.

The rest of this paper is organized as follows. Section
VI reviews the related work. Section II introduces the basic
database access protocol. In Section III, we propose a novel
location privacy-preserving mechanism for PU and SU. In Sec-
tion IV, we develop a new database access protocol to adjust
the PU’s and SU’s privacy preserving level for improving their
utility, respectively. Simulations are performed in Section V
to demonstrate the performance of the proposed mechanism.
Finally, Section VII concludes this paper.

II. PROBLEM FORMULATION

A. Basic Database Access Protocol

A typical database-driven cognitive radio network com-
prises three main components: PUs, SUs and spectrum man-
agement database. Database maintains PUs’ locations and
spectrum utilization information, which consists of PUs’ oc-
cupied channels and the corresponding protected contour. The
protected contour of one channel is an area, where no SUs
can transmit when the channel is occupied by PUs. However,
if one SU is beyond PUs’ protected contour, it is allowed to
transmit with a certain power. The farther this SU is located
from PUs, the larger power it can transmit. Whenever PUs
change their spectrum utilization information, they will notify
database to update the repository.

( , )iQ loc ch�

( , )R P t�

SU Database

Fig. 1: Basic database access protocol.

We now show a basic database access protocol without
considering the privacy breach issue as shown in Fig 1. Firstly,
an SU sends a query Q = (loc, chi) to database, where loc =
(x, y) is the accurate location of the SU and chi is the channel
which the SU is interested in. Then, after receiving the SU’s
query, the database responds R = (P, t) to the SU, where P
is the Maximum Transmission Power (MTP) of the interested

channel, t is the time duration in which the SU can utilize the
channel, e.g., if the interested channel is locally unavailable,
then the response is R = (0, 0). The MTP can be calculated
based on the following function

P =

{
0, d ≤ r0p,
h(d− r0p), d > r0p,

(1)

where r0p is the protected contour radius of the interested
channel, d is the distance between the queried SU and the PU
which is closest to the SU, and h(·) is a continuous monotone
increasing function.

B. Threat Model and Assumptions

The basic database access protocol is based on the as-
sumption that PUs and SUs trust each other. However, both
PUs and SUs may suffer from potential privacy breach threat.
This is because, to achieve the locally available channels, SUs
should report their locations to database. As service provider,
database manager may collect SUs’ location information to
make market decision or sales strategy, which violates SU’s
privacy.

In this paper, we assume that the database is an affiliated
entity of PUs, e.g. China Mobile may maintain a spectrum
management database if it decides to share the registered
spectrum with SUs. Thus, we further assume that PUs and
database trust each other, and database will not breach PUs’
operational information. We also assume that PUs’ location
privacy threat is only incurred by malicious SUs, e.g., a
malicious SU may infer PUs’ locations through seemingly
innocuous queries as depicted in Section III. Furthermore, we
assume that a sophisticated malicious SU can obtain the MTP
function which the database adopts [12].

C. Problem of Interest

Considering the potential privacy threat, both PUs and SUs
need to adopt an appropriate mechanism to preserve their
location privacy. Intuitively, regardless of their utility, PUs and
SUs may choose a relatively high PPL. However, unrestricted
increase PPL may seriously decrease both PUs’ and SUs’
utility. Thus we need to deal with the following two problems
in our paper:

1) How to devise a quantitative mechanism to preserve
the location privacy for both PUs and SUs?

2) How to design an efficient database access protocol
which allows for both PUs and SUs to adjust their
PPL to achieve the maximum utility?

III. QUANTITATIVE PRIVACY-PRESERVING MECHANISM

In this section, we introduce a bilateral privacy-preserving
framework which allows for PUs and SUs to preserve their
privacy simultaneously.

A. Location Privacy Preservation for PU

Before introducing the privacy-preserving mechanism for
PUs, we illustrate how its location privacy may breach. Sup-
pose PUs do not adopt any privacy-preserving mechanism.
A malicious SU can infer PU’s location through multiple
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queries as shown in Fig. 2(a). Every time when it queries
the database, one sophisticated malicious SU, which obtained
the MTP function of database [12], can compute the distance
between PU and itself. After multiple times of queries from
different locations, the malicious SU can choose three query
results that contain available transmit power to locate PU. The
query results that do not allow SU to transmit is useless to
conduct the inference attack.

We propose an obfuscation based mechanism as shown in
Fig. 2(b) to thwart SU’s inference attack. Every time when an
SU queries the database, database will add a random length
to PUs’ real protected contour radius before computing the
maximum transmit power. The malicious SU cannot calculate
the accurate distance between PU and SU since the distance
is randomized, which increases the difficulty to localize PU
accurately. We adopt exponential distribution to generate the
required random distance rε. The corresponding probability
density function is

g(rε) =

{
1
b e

− rε
b , rε > 0,

0, rε ≤ 0,
where b is the rate parameter. Essentially, adding exponential
noise is a special case of Laplacian mechanism. Notice that
if rε is negative, the obfuscated protected contour will be less
than the required one which may cause interference. Thus we
should adopt the positive part of Laplacian distribution rather
than the standard one, i.e. exponential distribution.

1SU
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1query

2query
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(a) Inference attack to PU
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(b) Privacy-preserving mechanism

Fig. 2: PU’s location privacy threat and countermeasure

Intuitively, if the added noise is larger, the privacy-
preserving level will be higher. So we adopt the expectation
of rε to denote the privacy-preserving level of PU. It is well
known that the expectation of rε is b. Thus, we can utilize the
rate parameter b to quantify PU’s privacy-preserving level.

B. Location Privacy Preservation for SU

As described in the basic database access protocol, SU
should report its accurate location to achieve the locally
available channels, in which situation SU is confronted with
privacy breach risk. In this subsection, we propose a random
mechanism, which permits SU to preserve its location privacy
while achieving a given utility simultaneously, based on ε-geo-
indistinguishability [14] mechanism.

Definition 1: A random mechanism satisfies l-geo-
indistinguishability if and only if for a reported location x,

we have

P (x|x0)
P (x|x′0)

≤ el, ∀r0 > 0, d(x0, x′0) ≤ r0,
l = εr0,

where r0 is radius of the largest margin where the SU may
locate through the random mechanism, x0, x

′
0 are two accurate

locations that may report x randomly.

Whether SU’s accurate location is x0 or x
′
0, the reported

location can be x with certain probability, and their probability
difference is upper bounded by el if the distance between x0
and x′0 is less than r0. The above definition guarantees that
even a malicious database manager gets a reported location x
from SU, he cannot infer SU’s accurate location, i.e., whether
SU is in x0 or x

′
0.

Notice that when the difference between P (x|x0) and
P (x|x′0) decreases, it is more difficult for malicious database
manager to infer SU’s accurate location, i.e. the privacy
preserving level is higher. In [14], the authors consider that for
a given radius r0, smaller ε achieves higher privacy preserving
level, i.e. ε-geo-indistinguishability mechanim.

From our perspective, given a certain l, we can adjust ε
to achieve a larger r0, every expected r0 corresponds to an
ε. Thus we can leverage r0 to denote SU’s privacy-preserving
level, a larger r0 means that SU can obfuscate its location in
a larger scale with l-geo-indistinguishability. By this notion,
SU can choose its protected scale flexibly, rather than adjust
its privacy level in a fixed scale as ε-geo-indistinguishability
mechanism shows.
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Fig. 3: The SU originally in x0 randomly generates its
obfuscated location with probability as shown in

’Probability’ axis.

Miguel Andres et al. [14] proved that two dimension-
al Laplacian noise satisfies ε-geo-indistinguishability, and
thus satisfies l-geo-indistinguishability. The probability density
function of two dimensional Laplacian distribution is

f(x|x0) = ε2

2π
e−εd(x0,x), (2)

where x0 ∈ R2 is the accurate location of SU and x ∈ R2 is
the obfuscated location of SU through the random mechanism.

Fig. 3 shows how this mechanism works. When SU’s
accurate location is x0, it may report x to the database with the
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probability given by two dimensional Laplacian distribution.
Since the two dimensional Laplacian distribution may generate
a random location to infinite place which is meaningless to SU,
thus we remap the location outside the required radius r0 to
the margin of it.

C. Bilateral Privacy Preservation Framework

In this paper, we consider a simple situation where there are
only one PU and one SU in the system. The bilateral privacy
preservation framework is shown in Fig. 4. The big solid circle
is the real protected contour of PU, the dashed circle is the
randomly generated protected contour based on the mechanism
in the aforementioned subsection, and the small solid circle is
the radius of area where l-geo-indistinguishability mechanism
can generate a random location of SU. SU ′

1 and SU
′
2 are two

randomly generated locations when the accurate location is
SU .

r�

o
Pr
PU

SU

Pr �

Sr

( , ')d PU SU� 1 'SU

2 'SU

Fig. 4: Bilateral privacy preservation framework.

As presented in the aforementioned subsection, we adopt
rε’s expectation E(rε) to quantify PU’s PPL and rs to quantify
SU’s PPL. Intuitively, increasing PU’s or SU’s PPL can both
decrease SU’s maximum transmit power, which may degrade
both PU’s and SU’s utility. To simplify, we leverage the
available transmit radius to analyze the maximum transmit
power, since the maximum transmit power is a continuous
monotonically increasing function of the available transmit
radius.

In a query process, when SU’s expected PPL is rs, and the
database generates a random distance rε to obfuscate PU’s real
protected contour, the database can calculate SU’s available
transmit radius as follows

R0 = d(PU, SU
′)− r0p − rε,

where d(PU, SU ′) is the distance between PU and SU’s
randomly generated location, r0p is the real protected contour
of PU.

Notice that in the worst case, the randomly generated
location may be in SU ′

2 as shown in Fig. 4. However, SU’s
real transmit location is SU . To avoid interference with PU, the
previously calculated available transmit radius should substract
SU’s expected contour rs as

R0 = d(PU, SU
′)− r0p − rε − rs. (3)

In our proposed framework, PU and SU can flexibly choose
their PPL E(rε) and rs, respectively. Different from traditional
database access protocol, that is impossible for PU and SU to
choose the optimal PPL to maximize their utility, we propose
a novel database access protocol in the next section.

IV. PRIVACY-PRESERVING DATABASE ACCESS PROTOCOL

In this section, we propose a new database access pro-
tocol called privacy preserving Utility Maximization protocol
(UMax). This protocol allows for PU and SU to adjust their
privacy preserving level to achieve the maximum utility.

A. Database Access Protocol Overview

Intuitively, if the distance between PU and SU is short, a
smaller PPL may achieve higher utility; if the distance is long,
a larger PPL may need to achieve higher utility. However, in
our system, PU and SU do not have any side information about
the distance of each other, the traditional two-step database
access protocol, i.e., query and response, is impossible to
enable both sides to decide the optimal PPL. In this situation,
the most effective strategy is to choose a fixed PPL which is
not always the optimal one.

To enable both sides to choose the optimal PPL, we propose
a new database access protocol, that comprises four steps. The
new protocol allows for PU and SU to exchange information
to decide the optimal PPL. Firstly, SU generates a random
location based on a relatively large expected PPL, then sends
it to the database together with the expected PPL. Secondly,
based on SU’s expected information, PU can decide its optimal
PPL through solving an optimization problem as depicted
in the following subsection, and then responds SU with the
expected available transmit radius. Thirdly, SU adjusts its PPL
to achieve a higher utility based on PU’s feedback, and resends
it to database. Finally, PU calculates SU’s maximum transmit
power and reports it.

B. UMax Protocol

In this subsection, we elabrate our proposed database
access protocol UMax, which is shown by a flow chart in
Fig. 5, and is explained in the following.

Step 1: SU sends its interested channel and the expected
privacy preserving level to database: An SU with accurate
location (x, y) sends a query Q = (chi, loc

′, rs, r0) to the
database, where chi is SU’s interested channel, loc

′ = (x̃, ỹ)
is the randomly generated location of SU based on l-geo-
indistinguishability mechanism, and rs denotes SU’s expected
PPL. In the real scenario, SU will not always expect to transmit
with the maximum available transmit radius when the radius
is long enough. It may request an expected transmit radius r0
based on its service requirement.

Step 2: PU decides the optimal privacy preserving
level to maximize its expected utility: Based on SU’s re-
quirement, i.e., interested channel, expected PPL and required
transmission radius, database can decide how SU can access
the interested channel. When SU’s interested channel is vacant,
database replies SU that it can access the channel with its
requirement without optimization. However, if the interested
channel is occupied by PU at the query time, database should
first decide an optimal PPL for PU based on the following
optimization problem:

Problem 4.1:

max E[Up],

s.t. E(rε) ≥ E(rε),
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Fig. 5: Database access protocol flow chart.

where E[Up] = Psell−Cpri is the expected utility of PU. Psell

is the revenue of PU by selling spectrum to SU, and Cpri is
PU’s privacy cost [15] which is inversely proportional to its
PPL. E(rε) is the lower bound of PPL that PU can tolerate.
The details about the optimization problem will be introduced
in the following subsection.

Solving problem 4.1 can achieve the optimal PPL of
maximizing PU’s utility. With the optimal PPL, the database
can generate a random distance rε, and calculate SU’s available
transmit radius R0 based on (3).

Finally, database makes the following decision: if R0 ≥ r0,
database responds SU that it can transmit with its required
radius r0. However, if R0 < r0, database responds SU that it
can only transmit within the available radius R0.

Step 3: SU adjusts its privacy preserving level to
achieve higher utility based on PU’s response: Based on
database’s feedback, SU adjusts its requirement accordingly. If
it received r0, SU’s requirement is satisfied, then SU resends
to database with ”deal” which means that the transaction is
done. However, if receiving the available radius R0, SU adjusts
its PPL parameter rs to achieve higher utility based on the
following optimization problem:

Problem 4.2:

max E[Us],

s.t. rs ≥ rs,

where E[Us] = P0 − Cuns − Cbuy − Cpri is SU’s expected
utility. P0 is SU’s reward when its requirement is fully satis-
fied. Cuns is the cost of the unsatisfied part of the required
transmit radius. Obviously, when the difference between R0

and r0 increases, Cuns becomes bigger. Cbuy is SU’s payment
of utilizing the spectrum which is equal to Psell of PU. Cpri

is SU’s privacy cost, and rs is the lower bound on PPL which
SU can tolerate.

Solving problem 4.2 can achieve the optimal PPL of SU,
i.e., r�s , to maximize SU’s utility. Then SU resends to database
with its optimal PPL r�s .

Step 4: PU allocates the available channel to SU and
calculates the corresponding transmit power: Based on SU’s
response, the database calculates SU’s transmit power based
on (1) accordingly. If SU’s response is ”deal”, the database
calculates SU’s transmit power based on r0. However, if SU’s
response is r�s , the database first recalculates the available
transmit radius R′

0 = d(PU, SU
′′)− r0p − rε − r�s . If R′

0 ≥ r0,
the database calculates SU’s transmit power based on r0,
otherwise, the database calculates SU’s transmit power based
on R′

0. Finally, the database informs SU the calculated transmit
power.

C. PU’s optimal decision

We define PU’s revenue function as follows

Psell = k1S̄,

S̄ =

{
πr20, Rε ≥ r0,
πR2

ε , Rε < r0,
(4)

where S̄ is the expected area where SU can transmit, (PU can
charge from SU according to the size of S̄), and k1 is the
unit price of spectrum. Rε is SU’s expected available transmit
radius which can be calculated as

Rε = d(PU, SU
′)− r0p − rs − E(rε).

The decrease of PU’s PPL may increase its revenue,
but suffer from larger privacy breach risk which should be
considered into PU’s utility, i.e. privacy cost. Privacy cost can
be defined in the following

Cpri =
kp
E(rε)

, (5)

where kp is the privacy cost coefficient.

Combining (4) and (5), we rewrite PU’s expected utility as

E[Up] = k1S̄ − kp
E(rε)

. (6)

Define M1 = d(PU, SU
′)− r0p − rs, we can rewrite PU’s

expected utility function to the following form

E[Up] =

{
k1πr

2
0 − kp

E(rε)
, E[rε] ≤M1 − r0,

k1π(M1 − E[rε])2 − kp
E(rε)

, E[rε] > M1 − r0.
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Theorem 4.1: The optimal privacy preserving level that
solves Problem 4.1 is given by
(1) When

√
kp
k1π

< M1 − r0, we discuss the impact of the
magnitude of M1 − r0 on the solution,

If E(rε) < M1 − r0,
E�(rε) =M1 − r0,

else

E�(rε) = E(rε).

(2) When

√
kp
k1π

≥M1 − r0, similarly, we have,

If E(rε) <
√

kp
k1π
,

E�(rε) =

√
kp
k1π

,

else

E�(rε) = E(rε).

Proof: We can find the optimal solution of each part of
the piecewise function, and then compare them to decide the
optimal solution.
(1) When E(rε) ≤M1 − r0,

dE(Up)

dE(rε)
=

kp
E2(rε)

> 0. (7)

Formula (7) shows that the utility function is monotonically
increasing in the interval (0,M1 − r0]. Thus, it can be seen
that

E�(rε) =M1 − r0,
(2) When E(rε) > M1 − r0,

dE(Up)

dE(rε)
= −k1π + kp

E2(rε)
. (8)

Let
dE(Up)
dE(rε)

= 0. We have

E(rε) =

√
kp
k1π

.

If

√
kp
k1π

< M1 − r0,

E�(rε) =M1 − r0,

else

E�(rε) =

√
kp
k1π

.

Comparing with the first case, we can achieve Theorem
4.1.

D. SU’s optimal decision

The same to the analysis of PU, we can define Cuns, Cbuy

and Cpri as follows

Cuns = k2ΔS, (9)

Cbuy = k1(S0ΔS), (10)

Cpri =
ks
rs
, (11)

where k2 is the coefficient of unsatisfied cost, ΔS = π(r0 −
R0)

2 is the unsatisfied part compared to SU’s requirement.

Combining (9), (10) and (11), SU’s expected utility can be
rewritten as

E[Us] = P0 − k2ΔS − k1(S0 −ΔS)− ks
r′s

= P0 − k1S0 − [(k2 − k1)ΔS + ks
r′s
].

Since P0−k1S0 is fixed, the original optimization problem
is equivalent to the following problem

Problem 4.3:

min (k2 − k1)ΔS + ks
r′s
,

s.t. r′s ≥ r′s,

where

ΔS = π(r0 −R′
0)

2

= π[r0 − (d(PU, SU ′)− r0p − rε − r′s)]2
= π[r0 −R0 − rs + r′s]2.

Define A = k2−k1 and B = r0−R0−rs. The optimization
problem becomes

Problem 4.4:

min πA(B + r′s)
2 +

ks
r′s
,

s.t. rs ≥ rs.

Solving the above optimization problem can achieve the
following theorem.

Theorem 4.2: Denote

H =
n

√
−q
2
+

√
(
q

2
)2 + (

p

3
)3 +

n

√
−q
2
−

√
(
q

2
)2 + (

p

3
)3,

where

p = −12π2A2B,

q = 16π3A3B3 − 108π2A2ks.

The optimal PPL that solves Problem 4.4 can be expressed
as follows
(1) When rs ≤ H ,

r�s = H,
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(2) When rs > H ,

r�S0 = rs.

Proof: We denote

F = πA(B + r′s)
2 +

ks
r′s
.

The derivative of F can be calculated as

dF

dr′s
= 2πA(B + r′s)−

ks
r′s
.

Let dF
dr′

s
= 0. We have

2πABr′2s + 2πAr
′3
s − ks = 0. (12)

Equation (12) is a cubic equation. By the formula of root
[16], we can obtain the result.

V. SIMULATION

In this section, we present extensive evaluations to demon-
strate the performance of our proposed mechanism.

A. Simulation Setup

Given on SU’s accurate location x0 ∈ R
2, it is difficult

to generate the random location x ∈ R
2 directly through

the definition of Laplacian distribution as (2). Thus, in this
subsection, we present an algorithm to generate a random
location which follows two dimensional Laplacian distribution
through uniform distribution.

Notice that the probability density function of two dimen-
sional Laplacian distribution depends only on the distance
between the accurate location x0 and random location x.
Thus, it will be more convenient to transform the Cartesian
coordinate system to polar coordinate system. The probability
density function of two dimensional Laplacian distribution
under polar coordinates is then given by

f(r, θ) =
ε2

2π
re−εr, (13)

where r is the distance between x0 and x. From (13) we
know that r and θ are independent from each other. The joint
probability density of r and θ is equal to the product of their
marginal probability, which can be calculated as follows

f(r) =

∫ 2π

0

f(r, θ) dθ = ε2re−εr, (14)

f(θ) =

∫ ∞

0

f(r, θ) dr =
1

2π
. (15)

Since r and θ are independent of each other, we can
generate r and θ separately. From (15). Thus, we know that
the marginal probability of θ is a constant number, thus we
can generate θ as a random number in the interval [0, 2π] with
uniform distribution.

As for r, we can first calculate its cumulative density
function as follows

C(r) =

∫ r

0

ε2ρe−ερ dρ = 1− (1 + εr)e−εr.

Then we generate a random number a in the interval [0, 1]
with uniform distribution. Finally, we generate r as

r = C−1(a).

Given an accurate location x0 = (s, t), a random location
that obey Laplacian distribution can be generated as

x = (s+ r cos θ, t+ r sin θ).

SUPU
r�

2
o
Pr �

(0,0) ( ,0)d

0.5Sr �

Fig. 6: Simulation setting.

B. Performance Comparison

To corroborate the effectiveness of our mechanism, we
perform simulations which is sketched in Fig. 6. Since the
utility is only relevant to the distance between PU and SU, for
simplicity, we set the coordinate of PU and SU to be (0, 0)
and (d, 0) respectively, where d is the distance between PU
and SU. It is easy to see that any instance of the real distance
between PU and SU can be transformed to the above situation
through coordinate transformation. The unit of distance is set
to be kilometer.

In our simulation, we consider a simple scenario of one
channel, one PU and one SU in our system. We set PU’s real
protected contour r0p to be 2 and SU’s expected PPL rs to be
0.5 in the first query stage. The unit price parameter k1 and
k2 are set to be 1 and 2, respectively, and the privacy cost
parameters kp and ks are both set to be 1. To evaluate the
average utility, we conduct 10000 queries for each distance
between PU and SU.

To illustrate the advantage of our proposed mechanism,
we consider the following baseline: PU and SU choose a fixed
PPL in every query process to preserve their location privacy,
and the fixed PPL of PU and SU are both set to be 0.5.

Fig. 7(a) shows that after deciding the optimal PPL, PU
can increase its utility efficiently for every distance between
PU and SU. When the distance is short, the available transmit
radius for SU will be small. Thus, both mechanisms only
achieve a low utility. With the distance increasing, the proposed
mechanism adjusts its PPL to achieve the optimal utility,
which leads to the increase of PU’s utility. However, when
the distance is long enough, SU’s requirement can always be
satisfied, and the revenue will not increase much. On the other
hand, the effect of privacy cost drops sharply according to

the cost function Cpri =
kp

E(rε)
. Therefor the utility of PU do

not increase much when the distance keeps increasing after a
certain point.

Fig. 7(b) shows that if PU makes the optimal decision,
SU that follows to make optimal decision can achieve higher
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(a) PU’s utility of optimal PPL versus fixed PPL.
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(b) SU’s utility obtained in the case where SU follows to choose
the optimal PPL versus the case where SU maintains the original
PPL, after PU made the optimal decision.
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(c) System utility of optimal PPL versus fixed PPL.

Fig. 7: An illustration of the efficiency of the proposed
database access protocol.

utility, compared with the situation where SU maintains its
PPL. Because when the distance is short, SU’s requirement
can not be always satisfied, therefore if SU adjusts its PPL
may effectively achieve higher utility. However, as the distance
expand, SU’s requirement can always be satisfied. Thus it
is unnecessary for SU to adjust its PPL. In such case, the

advantage of optimal decision is not prominent.

We adopt the summation of PU’s and SU’s utility in one
query process to denote the system utility. The system utility is
not the simple summation of the result in Fig. 7(a) and 7(b).
Essentially, this simulation is the system utility comparison
between our proposed four-step mechanism and the traditional
two-step mechanism. The simulation result shows that PU and
SU making optimal decision simultaneously can increase the
system utility compared to the fixed PPL mechanism.

VI. RELATED WORK

Location privacy preservation is a hot research topic and
attracts a lot of attention. There are a large amount of existing
works on the location privacy-preserving techniques. Among
them, k-anonymity [17] and cryptography [18] are two most
widely adopted notions.

The notion of k-anonymity is the most well-known
privacy-preserving technique [19]. One approach to achieve
k-anonymity is to use dummy locations [20]. This technique
properly selects k − 1 dummy points, and then performs k
queries to database together with the real location. Another
efficient method is cloaking [21][22], which creates a dummy
region that involves k different points sharing the same prop-
erty, and then queries the database with the dummy region.

l-diversity [23] and t-closeness [23] techniques are pro-
posed to address the weaknesses of k-anonymity when ho-
mogeneity exists in the sensitive values in a group. However,
the intrinsic drawback of k-anonymity is that a mechanism
is difficult to be proved to satisfy this notion, since the
attacker’s auxiliary information may violate the guarantee of
k-anonymity. In addition, k-anonymity based approaches are
difficult to quantify the privacy preserving level.

Cryptography is another location privacy-preserving tech-
nique, which has been widely used [24][25]. This technique
transforms all the data in a query process to a different space.
The query result can be mapped back to spatial information
only by the user. However, the computational overhead of
cryptography based technique is too high.

The existing works on the location privacy in database-
driven cognitive radio are mainly based on the aforementioned
techniques, which are either difficult to quantify the PPL
or computational demanding. In [11], Gao et al. proposed a
cryptography based location privacy-preserving protocol called
PSAIR for SUs. PSAIR allows for SUs to access the locally
available channels and preserve location privacy simultane-
ously. Bahrak et al. [12] pointed out that a malicious SU
can infer PU’s location through seemingly innocuous database
queries. Then they proposed a k-anonymity based mechanism
to preserve PU’s privacy.

The notion of differential privacy [13] comes from the
area of statistical database. Its goal is to preserve individual’s
privacy while achieving good statistical accuracy. The main
advantage of differential privacy is that the privacy guarantee
is independent of attacker’s auxiliary information, i.e., the
mechanism has no need to update when new types of attack
emerges. More importantly, differential privacy provides a
solid mathematical definition which is convenient to quantify
the privacy preserving level [26][27].

188188



Differential privacy is recently applied to preserve lo-
cation privacy. Ho et.al. [28] leveraged a quadtree spatial
decomposition technique to achieve differential privacy in
a location database. In [14], the authors proposed ε-geo-
indistinguishability mechanism, which is based on the notion
of differential privacy, to preserve a single user’s location
privacy. Due to the advantage of differential privacy, we adopt
the notion of differential privacy to preserve the location
privacy of both PUs and SUs. Essentially, the notion of dif-
ferential privacy provides guarantee to the privacy preserving
level of a class of random mechanism. Gaussian mechanism
and Laplacian mechanism [29] are the most widely adopted
mechanisms to achieve differential privacy.

VII. CONCLUSION

In this paper, we proposed a novel location privacy preser-
vation scheme, while achieving bilateral utilization maximiza-
tion of both PU and SU. First, a quantitative mechanism was
proposed to preserve the location privacy of both PU and SU
simultaneously based on the concept of differential privacy.
Based on the quantitative mechanism framework, we further
proposed a novel privacy preserving Utility Maximization
protocol (UMax). UMax allows for both PU and SU to adjust
their privacy preserving levels to achieve the optimal utility
in an iterative way. Extensive simulations demonstrated that
our proposed mechanism can efficiently increase both PU’s
and SU’s utility while preserving their location privacy. Our
future work will focus on extending the result of UMax to the
scenario with multiple PUs and SUs.
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