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Abstract—Incentive mechanism plays a critical role in privacy-
aware crowdsensing. Most previous studies assume a trustworthy
fusion center (FC) in their co-design of incentive mechanism and
privacy preservation. Very recent work has taken step to relax
the assumption on trustworthy FC and allowed participatory
users (PUs) to randomly report their binary sensing data,
whereas the focus is to examine PUs’ equilibrium behavior.
Making a paradigm shift, this paper aims to study the privacy
compensation for continuous data sensing while allowing FC
to directly control PUs. There are two conflicting objectives
in such a scenario: FC desires better quality data in order to
achieve higher aggregation accuracy whereas PUs prefer injecting
larger noises for higher privacy-preserving levels (PPLs). To
strike a good balance therein, we propose an efficient incentive
mechanism named REAP to reconcile FC’s aggregation accuracy
and individual PU’s data privacy. Specifically, we adopt the
celebrated notion of differential privacy to quantify PUs’ PPLs
and characterize their impacts on FC’s aggregation accuracy.
Then, appealing to Contract Theory, we design an incentive
mechanism to maximize FC’s aggregation accuracy under a
given budget. The proposed incentive mechanism offers different
contracts to PUs with different privacy preferences, by which FC
can directly control them. It can further overcome the information
asymmetry problem, i.e., FC typically does not know each PU’s
precise privacy preference. We derive closed-form solutions for
the optimal contracts in both complete information and incomplete
information scenarios. Further, the results are generalized to
the continuous case where PUs’ privacy preferences take values
in a continuous domain. Extensive simulations are provided to
validate the feasibility and advantages of our proposed incentive
mechanism.

Index Terms—Crowd sensing, data aggregation, privacy
preservation, incentive mechanism

I. INTRODUCTION

THE recent proliferation of portable mobile devices (e.g.,
smartphone, smartwatch, tablet computer, etc.), inte-

grated with a set of sensors (e.g., GPS, camera, accelerometer,
etc.), has spurred much interest in mobile crowdsensing [1],
[2]. Due to its advantage in reducing the deployment cost
in large-scale sensing applications, crowdsensing has been
applied to a large variety of areas such as smart transportation,
environmental monitoring, health-care, etc [3]–[6].
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Typically, sensing data collected from participatory users
(PUs) will be aggregated by the fusion center (FC) for data
analytics. For example, to identify public health condition,
FC can collect the daily exercise data from PUs and carry
out data aggregation such as average and histogram. Clearly,
contributing sensing data to FC can be costly for PUs,
considering the resources being consumed (e.g., energy and
bandwidth) and potential data privacy breach. Therefore, PUs
would be reluctant to participate in crowdsensing without a
proper incentive mechanism that compensates their cost. Most
previous studies focused on resources consumption for data
sensing and reporting in incentive mechanism design [7]–[9].
Only quite a few consider PUs’ privacy losses [10], a common
assumption made by these works is that FC is trustworthy
such that PUs’ privacy merely breach when FC releases the
aggregation results to the public.

In practice, the assumption of trustworthy FC may not hold
in many cases, e.g., when FC is compromised by malicious
attackers, or the communication channels between PUs and
FC are eavesdropped. Very recent work [11] has made the first
attempt to relax the trustworthy FC assumption and study how
to compensate PUs’ privacy losses in a game-theoretic model.
In [11], PUs can fully control their data privacy by adding
well-calibrated noises to the raw sensing data before reporting
them. However, the private data is assumed to be binary, which
is not widely applicable to real-world system. Further, the
focus of [11] is to examine the equilibrium behavior of PUs
where FC has no direct control over them. Different from [11],
this paper studies the privacy compensation for continuous
data sensing, where FC has direct control over PUs’ behaviors.

To this end, one challenge is to reconcile the following
conflict: PUs prefer injecting larger noise for higher privacy
preserving levels (PPLs) whereas FC desires better quality
data for higher aggregation accuracy. Another challenge is
to overcome the information asymmetry problem between FC
and PUs, since it is difficult (perhaps impossible) to know
PUs’ privacy preferences. Further, privacy preferences of PUs
are typically heterogenous, e.g., women have higher privacy
preferences to their age than men, and patients are more
concerned about their location privacy, which incurs diverse
privacy losses for different PUs under the same PPL. An
efficient incentive mechanism needs to differentiate the diverse
privacy losses of PUs and provides appropriate rewards that
capture their contributions to FC without knowing individual
PU’s precise privacy preference.
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To tackle these challenges, we propose REAP1, an ef-
ficient incentive mechanism based on Contract Theory. By
Contract Theory, FC can add some kind of enforcement
to incentivize PUs by signing specific contracts with them.
Different contracts are designed for PUs of different types,
each of which specifies one type of PPL and the corresponding
payment that a PU will receive if he/she can sacrifice the
given PPL. A key concern here is to design a proper menu
of contracts that satisfies incentive compatibility such that all
PUs can maximize their utilities when they truthfully reveal
their privacy preferences.

Specifically, we adopt differential privacy [12] to quantify
individual privacy and (α, δ)-accuracy to measure FC’s ag-
gregation accuracy. Then, the quantitative impact of individual
PU’s PPL on FC’s aggregation accuracy is derived. In light that
each PU’s impact on the aggregation accuracy is quantified,
we can design a menu of optimal contracts that maximize
FC’s aggregation accuracy under a given budget. We first
consider the complete information scenario where FC knows
the precise type of each PU, and use the best achievable
aggregation accuracy as the benchmark. We next consider the
optimal contract design in incomplete information scenario
where FC knows only the probability distribution of PUs’
types. Closed-form solutions for both scenarios are derived.
Further, we generalize our results to the case where PUs’
privacy preferences can take value in a continuous domain.
In such a case, the optimization problem turns out to be a
functional extreme value problem that can be solved using an
optimal control based approach.

The contributions of this paper are three folds:

1) We propose REAP, a Contract Theory based incentive
mechanism, to compensate PUs’ data privacy losses and
hence resolve the information asymmetry issues between
PUs and FC.

2) We adopt proper measures to quantify both individual
PU’s PPL and FC’s aggregation accuracy, by which the
quantitative impact of individual privacy on aggregation
accuracy is derived.

3) Closed-form solutions are derived for both complete
information and incomplete information scenarios. We
also generalize our results to the case of continuous
privacy preferences.

The rest of this paper is organized as follows. The related
work is discussed in Section II. Section III presents an
overview to the proposed crowdsensing system, and the quan-
titative impact of PUs’ PPLs on FC’s aggregation accuracy.
In Section IV, we leverage Contract Theory to address the
information asymmetry problem and generalize our results
to the continuous case in Section V. Simulation results are
illustrated in Section VI to validate our theoretical results.
Section VII concludes this paper.

The main notations used in this paper are summarized in
Table I.

1The name REAP comes from REconciling Aggregation accuracy and
individual Privacy.

TABLE I: Notations

U Set of PUs
D Set of sensing data
di PU i’s raw sensing data
γ PUs’ data range
ηi Laplacian noise added to PU i
bi Scale parameter of ηi
n Number of PUs
k Number of PUs’ types
λk Number of type-k PUs
ui PU i’s utility
pi PU i’s payment
εi PU i’s privacy preserving level
θi PU i’ privacy preference
α FC’s aggregation error
δ FC’s confidence level for the aggregation error
B FC’s budget constraint

II. RELATED WORK

Recently, plenty of incentive mechanisms have been pro-
posed to stimulate PUs’ participation in mobile crowdsensing
systems. Most of these mechanisms are based on either auction
[10], [13]–[17] or other game-theoretic models [18]–[22],
which aim to achieve different objectives. Specifically, in [15],
[21], the authors aim to maximize the social welfare. The
objective of [18], [19] is to maximize the profit of FC, and
[17], [22] design mechanisms to minimize FC’s payment. The
basic requirement of these mechanisms is to guarantee that
all PUs’ costs are compensated, at least in the expectation
sense. Most previous studies only compensate PUs’ resources
consumptions for sensing and reporting data, while their
privacy losses are not remunerated explicitly.

Interestingly, Ghosh et al. took the first step to purchase
PUs’ privacy in their seminal work [23]. In [23], data owners
bid their privacy preferences, and the system chooses a set
of users and decides the corresponding PPLs to achieve
the best statistic accuracy under a given budget. Based on
this work, a few improved mechanisms [10], [24]–[26] have
been proposed, especially considering the correlation between
privacy preferences and private data. A common assumption
made by these works is a trustworthy FC, where PUs should
report their raw sensing data to FC. Differential privacy is
employed to the aggregation result, i.e., the noise is added
to the aggregation result. However, in our setting, we do not
assume a trustworthy FC, and differential privacy is employed
to each PU’s raw sensing data, which is called local differential
privacy. In practice, our setting is more practical, since FC
may be compromised by malicious attackers, or the commu-
nication channels between PUs and FC may be eavesdropped.
Furthermore, the mechanism design in our setting is more
challenging, since the added noises will inevitably impair the
aggregation accuracy. Therefore, the aggregation accuracy and
FC’s total payment should be jointly optimized instead of
being designed separately as in previous works. Although [11]
removed the trustworthy FC assumption, the focus of [11] is
to examine PUs’ equilibrium behavior, which may end up with
an inefficient equilibrium, i.e., FC may not achieve desirable
aggregation accuracy in a cost-efficient manner. Furthermore,
the private data considered in [11] is binary bit, which is not
widely applicable in mobile crowdsensing systems. Different
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from [11], this paper aims to study the privacy compensation
for continuous data sensing while allowing FC to directly
control PUs’ behavior, such that FC can achieve desirable
aggregation accuracy in a cost-efficient manner.

Another line of related work is privacy-preserving mecha-
nism design in mobile crowdsensing systems. These works
do not take PUs’ data privacy into consideration. Instead,
they consider the privacy issue of the mechanism itself. For
example, [27], [28] aim to preserve PUs’ anonymity within
the incentive mechanism, and [29]–[31] aims to preserve PUs’
bidding privacy.

III. SYSTEM MODEL

In this section, we first present the system overview. Then,
we quantify PUs’ PPLs and their impacts on FC’s aggregation
accuracy.

A. System Overview

The mobile crowdsensing system considered in this pa-
per consists of an untrusted FC, a task agent and a set
U = {u1, u2, · · · , un} of PUs as shown in Fig. 1. FC aims
to collect a set of sensing data from n PUs, denoted as
D = {d1, d2, · · · , dn}, where di ∈ R is a real number.
Then it carries out some aggregation operations, such as
average, max/min, histogram, etc, to abstract some valuable
patterns. For easy exposition, we will investigate the aver-
age aggregation2, i.e., s = 1

n

∑n
i=1 di, which constitutes a

large portion of currently deployed crowdsensing system. For
example, some map application such as Baidu map collects
GPS data (e.g., location and speed) from mobile vehicles and
conducts average aggregation to estimate the real-time traffic
condition. In the healthcare application, FC intends to collect
PUs’ daily exercise data and conduct average aggregation to
monitor public health condition.

Clearly, the sensing data may contain sensitive information
about PUs. A powerful and curious attacker may use these
data to infer PUs’ personal information. For example, in the
healthcare application, the exercise data allow adversaries to
infer individual PU’s health condition or living habit. Differ-
ent from most of the previous works on privacy-preserving
data aggregation in crowdsensing, we do not assume FC to
be trustworthy, since a sophisticated malicious attacker can
compromise FC’s database or eavesdrop the communication
channels between PUs and FC. Therefore, PUs may not be
willing to contribute their raw sensing data due to the privacy
concern. To dispel PUs’ worry about privacy, we propose to
allow PUs to add well-calibrated noises ηi to their raw sensing
data di before reporting them, and their PPLs can be strictly
quantified by differential privacy as depicted in Section III-B.

However, there are two conflicting objectives in this setting:
FC desires better quality data in order to achieve higher
aggregation accuracy whereas PUs prefer adding larger noise
for higher PPLs (these conflicts will further be quantified in
Section III-C). In this paper, we aim to design an efficient

2We leave the discussion of other kinds of data aggregations in future work
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Fig. 1: Framework of REAP.

mechanism to reconcile these conflicts. The framework of the
proposed crowdsensing system is shown in Fig. 1 and the
workflow is as follows:
• Firstly, the task agent announces a sensing task to FC.
• Incentive Mechanism. Then, FC designs a menu of

contract items (each specifies a privacy-payment pair) that
maximize the aggregation accuracy under given budget,
and broadcast them to all PUs. PUs can choose to sign
any one of the contracts that maximize their own utilities.
Once the contract is signed, PUs must report a privacy-
preserving version of their sensing data with the PPLs
specified in the contracts. In return, they will receive the
corresponding payments.

• Data Aggregation. Next, upon receiving the privacy-
preserving sensing data from PUs, FC conducts average
aggregation on these data.

• Finally, FC returns the aggregated data to the task agent.

B. Differentially Private Data Reporting

In this subsection, we adopt the celebrated notion of dif-
ferential privacy [32] to quantify PUs’ PPLs and their cor-
responding privacy losses, with which we define PUs’ utility
function.

Informally, differential privacy guarantees that, after re-
ceiving the randomized data, the attackers cannot distinguish
between two neighboring inputs with high confidence. Here,
neighboring relationship is an important concept in differential
privacy. In this paper, we adopt the neighboring relationship
for continuous value as follows:

Definition 1 (γi-adjacency). Two continuous data di and d′i
are γi-adjacency, if |di − d′i| ≤ γi, where γi is the range of
PU i’s sensing data.

Then, we can give the formal definition of differential
privacy.

Definition 2 (εi-differential privacy [33]). A random algorithm
{A : R→ R|A(di) = di+ηi} achieves εi-differential privacy,
if for all pairs of γi-adjacency data di and d′i, and observation
dobs,

Pr[A(di) = dobs] ≤ eεiPr[A(d′i) = dobs]. (1)
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Intuitively, PU i’s accurate sensing data can be either di or
d′i from an attacker’s view. As Fig. 2 shows, after adding noise
ηi, both di and d′i can result in dobs with certain probabilities,
i.e., pi and p′i. Thus, attackers cannot infer PU i’s accurate
sensing data with high confidence when they receive dobs.
Clearly, smaller εi means higher PPL, since it is more difficult
to distinguish di and d′i when observing dobs.

Fig. 2: Illustration of differential privacy.

Laplacian mechanism and exponential mechanism are most
widely used mechanisms to achieve differential privacy [34,
Chapter 2]. Laplacian mechanism is developed to handle the
numeric queries while exponential mechanism is applied to
non-numeric value queries, e.g., the output of query function
is categorical. In this paper, the sensing data we considered
are numeric data. Hence, we adopt the Laplacian mechanism
to achieve differential privacy. The Laplacian mechanism
achieves εi-differential privacy by calibrating the scale param-
eter following Lemma 1.

Lemma 1. If the Laplacian mechanism is used, i.e., ηi ∼
Lap(0, bi), we can achieve εi-differential privacy by setting
bi = γi

εi
.

The proof can be found in Appendix A. By differential
privacy, we can also define PUs’ privacy loss. According to the
utility theoretic characterization of differential privacy [35],
the relationship between the expected utilities of two adjacent
data can be characterized by eεi based on (1). Since εi always
takes a small value in practice, we have eεi ≈ 1 + εi. Further,
the privacy loss can be modeled as the difference between the
utility of true data and the utility of perturbed data [23], which
is a linear function of εi according to the above observation.
Then, we can define PUs’ utility in Definition 3.

Definition 3 (PUs’ utility). PU i’s utility is given by

ui = pi − θiεi, (2)

where pi is PU i’s reward when he/she contributes sensing
data to FC. θi is the privacy preference of PU i which indicates
how much PUs care about their privacy. Clearly, different PUs
have different privacy preferences [36], for instance, patients
in hospital have higher privacy preferences to their location
than others. Naturally, individual PU’s privacy preference is

private information and unknown to FC, or in other words,
there exists information asymmetry between FC and PUs.

Notice that we only consider the cost incurred by PUs’
privacy losses in order to ease the presentation of this paper,
meanwhile the result in this paper can be adapted to incor-
porate other types of sensing costs. For instance, denote PU
i’s other types of costs by si. Then, his/her utility is given by
ui = pi−si−ci, where pi and ci is PU i’s payment and privacy
cost, respectively. Define p′i = pi − si. PU i’s utility becomes
ui = p′i − ci, which is the same with the utility function in
this paper.

C. Privacy versus Accuracy

In this subsection, we illustrate the conflict between FC’s
aggregation accuracy and PUs’ PPLs by deriving their quan-
titative relationship.

To quantify the aggregation accuracy of the privacy preserv-
ing sensing data, we adopt the following accuracy definition.

Definition 4 ((α, δ)-accuracy). The aggregation ŝ of privacy-
preserving sensing data achieves (α, δ)-accuracy if

Pr[|ŝ− s| ≥ α] ≤ 1− δ,

where s is the aggregation result of accurate sensing data.
Intuitively, this definition indicates that the aggregation error

is larger than α, with probability at most 1−δ. From estimation
theory’s perspective, α stands for confidence interval and δ
stands for confidence level. Clearly, for a given confidence
level, a smaller confidence interval / aggregation error means
better aggregation accuracy. For ease of exposition, we lever-
age aggregation error α under a certain confidence level δ to
represent the aggregation accuracy in the following part, where
smaller aggregation error means better aggregation accuracy.

Then, we derive the quantitative relationship between in-
dividual PU’s privacy and FC’s aggregation accuracy as the
following lemma:

Lemma 2. For a given confidence level δ ≤ 1, the aggregation
error α of the privacy-preserving sensing data is given by

α =

√
2γ

n
√

1− δ

√√√√ n∑
i=1

1

ε2i
. (3)

where εi is PU i’s PPL, n is the number of PUs, and γ is
the range of PUs’ sensing data3. The proof can be found in
Appendix B.

Recall that smaller εi indicates higher PPL. By examining
Formula (3), we observe that FC’s aggregation error α de-
creases when PUs adopt lower PPLs, i.e., larger εi, which
conforms to our intuition. Formula (3) indicates that FC and
PUs have conflicting objectives, i.e., FC hopes PUs to adopt
lower PPLs to decrease the aggregation error, whereas PUs aim
to adopt higher PPLs to better preserve their privacy. In the
next section, we resolve this conflict through Contract Theory.

3Notice that the range of the sensing data should be the same for all PUs
in a specific crowdsensing application, for example, the heart rate of a normal
adult is always in the range 60 ∼ 100 bpm. Thus, all PUs’ γi should take
the same value, i.e., γi = γ,∀γi.
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IV. INCENTIVE MECHANISM DESIGN: A CONTRACT
THEORETIC APPROACH

So far, we have quantified the conflict between PUs’ privacy
and FC’s aggregation accuracy. In this section, we present a
contract theoretic approach to resolve the conflicting objectives
between PUs and FC.

A. Contract Formulation

Contract theory generally studies how economic decision-
makers construct contractual arrangement in the presence of
information asymmetry. In this paper, FC typically does not
know each PU’s privacy preference θi, and aims to design a
menu of contracts to stimulate PUs’ participation in crowd-
sensing. To facilitate later discussion, we classify PUs into
different types based on their privacy preferences, i.e., the
privacy preference of type-i PUs is θi.

In this section, we consider the case where PUs have finite
types of privacy preferences, say k types Θ = {θi, θ2, · · · θk}.
We leave the discussion of the case where θ takes continuous
value in the next section. To facilitate the analysis, we sort
PUs’ types in ascending order, i.e., θ1 ≤ θ2 ≤ · · · ≤ θk. Using
Contract theory, FC provides each type of PUs a given PPL
εi and the corresponding payment pi. Specifically, FC aims to
design a set C = {(ε1, p1), · · · , (εk, pk)} of privacy-payment
pairs called contract items. Each PU chooses to sign one of the
contract items (εi, pi), and then report εi-differentially private
sensing data for payment pi.

Each type of PUs choose the contract item that maximizes
their utilities defined in (2). FC aims to optimize the contracts
and minimize the aggregation error, i.e., minimize α derived
in (3). Since

√
2γ

n
√
1−δ is a positive constant, minimizing α =

√
2γ

n
√
1−δ

√∑n
i=1

1
ε2i

is equivalent to minimizing α =
∑n
i=1

1
ε2i

.
In the following subsection, we will consider the optimal

contract design under two information scenarios:
• Complete information: The complete information sce-

nario is served as a benchmark, where FC knows each
PU’s precise type, and thus can offer a precise contract
to each PU directly. Clearly, FC achieves lowest aggre-
gation error in this scenario since there are no additional
payments. This can serve as the lower bound of FC’s
achievable aggregation error in any information scenarios.

• Incomplete information: In the incomplete information
scenario, FC does not know each PU’s precise type, but
knows the distribution of PUs’ types, e.g., type-i has λi
PUs. In this scenario, FC should design and broadcast a
menu of optimal contracts to all PUs, and each PU can
choose one of the contracts that maximize his/her utility.

B. Optimal Contract Design under Complete Information

In the complete information scenario, FC knows each PU’s
precise type. We will leverage the aggregation error achieved
in this case as a benchmark to evaluate the performance of the
proposed contracts under incomplete information scenario. As
FC knows each PU’s precise type, it can offer precise contract
to each PU directly. In this scenario, FC only need to guarantee
that each PU’s utility is nonnegative so that they are willing

to contribute their sensing data. In Contract Theory, we call
this individual rationality constraints.

Definition 5 (Individual Rationality). A menu of
contracts satisfy Individual Rationality (IR) constraints if they
provide nonnegative utilities to all PUs, i.e.,

pi − θiεi ≥ 0,∀i. (4)

Thus, we can design the optimal contracts under complete
information by solving the following optimization problem:

Problem 1.

min
k∑
i=1

λi
ε2i
,

s.t.
k∑
i=1

λipi ≤ B, (5)

pi − θiεi ≥ 0, ∀i. (6)

where B is the total budget that FC possesses.
Then, we provide solution to this optimization problem.

Lemma 3. The inequalities in (5) and (6) can take the equal
sign simultaneously, i.e.,

∑k
i=1 λipi = B and pi − θiεi = 0.

It is easy to show that both (5) and (6) can take the equal
sign by contradiction. Given pi, if there exists a contract that
satisfies pi − θiεi > 0, then we can always find a larger εi
to achieve lower aggregation error until the equality satisfies.
Similarly, If there exists a contract that satisfies

∑k
i=1 λipi <

B, we can always find a larger pi, which means larger εi,
to achieve lower aggregation error until the equality satisfies,
which leads to the correctness of this lemma.

Lemma 3 shows that both IR constraints and budget con-
straint are tight at the optimal solution to Problem (1), which
indicates that FC can provide zero utility to each type-i PU
with p∗i = θiε

∗
i and expend the budget. Therefore, Problem 1

can be reduced to the following problem:

Problem 2.

min
k∑
i=1

λi
ε2i
,

s.t.
k∑
i=1

λipi = B, (7)

pi − θiεi = 0, ∀i. (8)

By solving Problem 2, we have the following theorem.

Theorem 4. In the complete information scenario, the optimal
contract {ε∗i , p∗i } is given by

ε∗i =
B∑k

j=1 λjθ
2
3
j

θ
− 1

3
i , (9)

p∗i =
B∑k

j=1 λjθ
2
3
j

θ
2
3
i . (10)

The proof can be found in Appendix C. By looking into
the parameters in the optimal contracts provided in Theorem
4, we have the following observation.
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Observation 1. Recall that smaller εi means higher PPL,
Theorem 4 illustrates that type-i PU’s PPL decreases with
B, and increases with θi, which conforms to our intuition. In
another word, more budgets stimulate PUs to choose lower
PPLs to achieve lower aggregation error, and FC tends to
buy less privacy from PUs with higher privacy preferences to
reduce payment.

C. Optimal Contract Design under Incomplete Information

In the incomplete information scenario, FC does not know
each PU’s precise type, while the distribution of PUs’ types
is assumed to be known, i.e., type-i have λi PUs. In prac-
tice, the distribution of PUs’ types can be obtained through
questionnaire survey or analysis of the historical behavior of
PUs [37], [38]. Clearly, FC should design an optimal contract
for each type of PUs to achieve lower aggregation error, but
due to the lack of knowledge about each PU’s precise type,
FC can only broadcast all contracts to all PUs. However, if
choosing the contract designed for other types of PUs brings
them higher utilities, some selfish PUs may pretend to be
other types. To encourage all PUs to truthfully reveal their
types, the optimal contracts should guarantee that choosing the
contract corresponding to their own type can always achieve
the highest utilities. Formally, we define this requirement as
incentive compatibility constraints.

Definition 6 (Incentive Compatibility). A menu of contracts
satisfies Incentive Compatibility (IC) constraints if the contract
designed for type-i PUs brings them highest utility, i.e.,

pi − θiεi ≥ pj − θiεj , ∀j 6= i. (11)

Apart from the incentive compatibility constraints, the
contracts under incomplete information scenario should also
satisfy the individual rationality constraints in Definition 5.
Thus, we can design the optimal contract under incomplete
information scenario by solving the following optimization
problem:

Problem 3.

min
k∑
i=1

λi
ε2i
,

s.t.
k∑
i=1

λipi ≤ B, (12)

pi − θiεi ≥ 0, ∀i, (13)
pi − θiεi ≥ pj − θiεj , ∀j 6= i. (14)

Notice that in Problem 3, there are k IR constraints and
k(k − 1) IC constraints, which makes it difficult to solve the
optimization problem. Next, we show that these constraints
can be reduced to a set of fewer equivalent constraints by the
following lemmas.

Lemma 5. The k IR constraints can be reduced to the
following one constraint:

pk − θkεk = 0. (15)

Proof. Recall that we have sorted PUs’ types in ascending
order, i.e., θ1 ≤ θ2 ≤ · · · ≤ θk. Based on IC constraints, we
have

pi − θiεi ≥ pk − θiεk ≥ pk − θkεk,∀i 6= k.

Thus, if the IR constraint of type-k satisfied, i.e., pk −
θkεk ≥ 0, it will satisfied for all other types automatically.
Therefore, we can keep the last IR constraint and reduce
the others. Moreover, if there exists an optimal contract that
satisfies pk − θkεk > 0, we can always find a larger εk to
achieve lower aggregation error until pk − θkεk = 0, which
concludes the proof.

Lemma 5 shows that only the highest type of PUs achieve
zero utilities, and lower types of PUs achieve positive utilities
that decrease with their types. The reason is that FC does not
know each PU’s type, it needs to provide incentives in terms of
positive utilities to PUs to attract them revealing their truthful
types. This is called information loss compared to complete
information.

Lemma 6 (Monotonic Property). If θ1 ≤ θ2 ≤ · · · ≤ θk, then
ε1 ≥ ε2 ≥ · · · ≥ εk holds.

Proof. By the IC constraints, it is directly that

pi − θiεi ≥ pj − θiεj ,
pj − θjεj ≥ pi − θjεi.

Adding these two inequalities, we have εi(θj−θi) ≥ εj(θj−
θi). Thus, if θi ≤ θj , then εi ≥ εj for all i and j, which leads
to the correctness of this lemma.

Intuitively, Lemma 6 illustrates that PUs with higher type
should be assigned lower PPL, since their unit cost is higher
and FC needs to compensate them more when their impacts
on the aggregation accuracy are the same. Further, this Lemma
can be leveraged to prove the correctness of Lemma 7.

Lemma 7. The k(k−1) IC constraints can be reduced to the
following k − 1 constraints.

pi − θiεi = pi+1 − θiεi+1,∀i ≤ k − 1. (16)

The proof can be found in Appendix D. Lemma 7 ensures
that if the contract item (εi, pi) designed for type-i PUs bring
them the same utilities with the contract item (εi+1, pi+1)
designed for type-(i+1) PUs, all the IC constraints for type-i
PUs are satisfied.

Based on Lemma 5 and Lemma 7, we can reduce Problem
3 to the following problem:

Problem 4.

min
k∑
i=1

λi
ε2i
,

s.t.
k∑
i=1

λipi = B, (17)

pk − θkεk = 0, (18)
pi − θiεi = pi+1 − θiεi+1,∀i ≤ k − 1. (19)
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Fig. 3: The ratio of FC’s lower aggregation error under
incomplete information and complete information as a
function of PUs’ realization in three types, i.e., αI

αC
.

By solving Problem 4, we can calculate the optimal con-
tracts with the following theorem.

Theorem 8. In the incomplete information scenario, the
optimal contract {ε∗i , p∗i } is given by

ε∗i = GH
− 1

3
i λ

1
3
i ,

p∗i =

{
G(θiH

− 1
3

i λ
1
3
i +

∑k
j=i+1 ∆θjH

− 1
3

j λ
1
3
j ), i 6= k,

GθkH
− 1

3

k λ
1
3

k , i = k,

where

∆θi = θi − θi−1, (20)

Hi =

{
λ1θ1, i = 1,

λiθi + ∆θi
∑i−1
j=1 λj , i > 1,

(21)

G =
B∑k

j=1H
2
3
j λ

1
3
j

. (22)

The proof of Theorem 8 is given in Appendix E. Next,
we compare FC’s aggregation accuracy under incomplete and
complete information scenarios. In Fig. 3, we show the ratio of
FC’s aggregation accuracy under incomplete information and
complete information scenarios when there are three types.
λ1 = 0, 50, 100, 150, 200, 250 correspond to the lines from
bottom to top, respectively. In this figure, we only show λ1
and λ2, and λ3 = N − λ1 − λ2. Other parameters are N =
300, B = 1000, γ = 10, δ = 0.9, θ1 = 1, θ2 = 2, θ3 = 3. The
ratio is a function of PUs’ realization {λi}3i=1 in three types,
which is always larger than or equal to 1, as FC achieves
lower aggregation error under complete information scenario.
By analyzing Fig. 3, we have the following observation.

Observation 2. Compared with complete information, FC
achieves higher aggregation error under incomplete infor-
mation. The gap between FC’s aggregation error under two
information scenarios is minimized when all PUs belong to
the highest type, i.e., type-3. For fixed λ1, the gap increases
when the number of type-3 PUs decrease until they reach a
small value.

The ratio reaches 1 when all PUs belong to the highest type,
since in this situation, all PUs obtain zero utilities as in the

complete information scenario. When the number of type-3
PUs decreases, the information loss increases, which leads to
the increase of the gap. However, when the number of type-
3 PUs reaches a small value, the effect of information loss
decreases compared to the complete information, so that the
ratio increases.

D. Discussions on Practical Implementation

By solving the above optimization problems, FC could
provide a menu of optimal contracts to stimulate all types
of PUs’ participation in crowdsensing. However, PUs’ action,
if cannot be monitored by FC, may deviate from the contract
in practice, e.g., a selfish PU may add noise with higher PPL
than which signed in the contract to achieve higher utility. To
ensure that all PUs generate noise strictly with the PPLs signed
in the contract, FC can install a trusted crowdsensing app in
PUs’ mobile devices [39]. Once the contract is signed, the
noise level would be controlled by the trusted crowdsensing
app, such that PUs’ PPLs can be monitored by FC.

Unlike traditional crowdsensing systems that aim to select
a subset of PUs to conduct a specific task (e.g., reporting
whether the traffic is jam or not), this paper focuses on the
data aggregation, where FC aims to collect enough sensing
data from PUs to conduct statistic analysis. Specifically, we
investigate the average aggregation of a group of specified
PUs’ sensing data (e.g., calculating the average time of exer-
cises in a specific area). From a statistical perspective, we aim
to study the calculation of the population mean of the specified
PUs’ sensing data. Therefore, we need to collect all PUs’
sensing data to yield the true population mean. In practice,
if the population of PUs is extremely large, we can sample a
subset of PUs to estimate the population mean. By [40], we
know that the average of the sample is an unbiased estimation
of the population mean. However, we emphasize that unbiased
estimation is not equivalent to the true population mean. If the
population of PUs is not large enough, it is recommended to
involve all PUs’ participation to calculate the true population
mean.

V. GENERALIZATION TO THE CONTINUOUS CASE

In this section, we analyze the optimal contracts design
when PUs’ privacy preferences take values from continuous
domain.

We assume that PUs’ types θ are in the interval [θ, θ], and
the probability density function of θ is h(θ). Similar to the
analysis of discrete case, FC can design the optimal contracts
by solving the following optimization problem:

Problem 5.

min

∫ θ

θ

h(θ)

ε2(θ)
dθ,

s.t.

∫ θ

θ

p(θ)h(θ)dθ ≤ B, (23)

p(θ)− θε(θ) ≥ 0, (24)

p(θ)− θε(θ) ≥ p(θ̂)− θε(θ̂), ∀θ̂ 6= θ. (25)
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where (23) is the budget constraint, (24) is the IR constraints
and (25) is the IC constraints.

Notice that the IR and IC constraints in (24) and (25) are
infinite since θ is a continuous value, making the optimization
problem challenging. Similarly, we reduce the IR and IC
constraints by the following two lemmas.

Lemma 9. The infinite IR constraints can be reduced to the
following one constraint,

p(θ)− θε(θ) = 0. (26)

Proof. By the the IC constraints, we can derive the following
inequality,

p(θ)− θε(θ) ≥ p(θ)− θε(θ)
≥ p(θ)− θε(θ), ∀θ 6= θ.

The above inequality shows that the IR constraint of type-θ
satisfied implies the IR constraints satisfied for all θ ∈ [θ, θ].
Thus, we can reduce IR constraints to p(θ)− θε(θ) ≥ 0. Fur-
ther, we show that p(θ)−θε(θ) ≥ 0 can take the equal sign. If
there exists a contract (ε(θ), p(θ)) such that p(θ)− θε(θ) > 0,
we can always find a larger ε(θ) to achieve lower aggregation
error until p(θ)−θε(θ) = 0, which leads to correctness of this
lemma.

Lemma 10. The infinite IC constraints can be reduced to the
following two constraints,

dε(θ)

dθ
≤ 0, (27)

dp(θ)

dθ
− θdε(θ)

dθ
= 0. (28)

Proof. Based on (25), we can derive the following two local
conditions for type-θ PUs,

dp(θ̂)

dθ̂

∣∣∣
θ̂=θ
− θdε(θ̂)

dθ̂

∣∣∣
θ̂=θ

= 0, (29)

d2p(θ̂)

dθ̂2

∣∣∣
θ̂=θ
− θd

2ε(θ̂)

dθ̂2

∣∣∣
θ̂=θ
≤ 0. (30)

Since (29)(30) hold for all θ ∈ [θ, θ], we have

dp(θ)

dθ
− θdε(θ)

dθ
= 0, (31)

d2p(θ)

dθ2
− θd

2ε(θ)

dθ2
≤ 0. (32)

By differentiating (31), we can simplify (32) as

dε(θ)

dθ
≤ 0. (33)

Then, we prove that (31) and (33) hold globally. By inte-
grating (31) from θ̂ to θ, we have

p(θ)− p(θ̂) = θε(θ)− θε(θ̂)−
∫ θ

θ̂

ε(u)du. (34)

Rearrange (34), we have

p(θ)− θε(θ) = p(θ̂)− θ̂ε(θ̂) + (θ̂ − θ)ε(θ̂)−
∫ θ

θ̂

ε(u)du.

Since ε(θ) is non-increasing, we have (θ̂ − θ)ε(θ̂) −∫ θ
θ̂
ε(u)du ≥ 0. Thus, we can conclude that p(θ) − θε(θ) ≥

p(θ̂)− θ̂ε(θ̂) for all θ̂ 6= θ, which indicates that (31) and (33)
hold globally.

Similar to the analysis of the discrete case, the budget
constraint (23) can take the equal sign, i.e.,∫ θ

θ

p(θ)h(θ)dθ = B. (35)

Then, we can transform Problem 5 to the following problem:

Problem 6.

min

∫ θ

θ

h(θ)

ε2(θ)
dθ,

s.t. (35)(26)(27)(28).

Notice that Problem 6 is a functional extreme value prob-
lem, we can utilize the optimal control method to solve this
problem.

Let u(θ) = ε(θ) be the control variable, and let x1(θ) =
p(θ)− θε(θ) be the state variable. Then, we have

ẋ1(θ) = ṗ(θ)− ε(θ)− θε̇(θ)
= −ε(θ) = −u(θ),

where the second equality is due to (28).
To deal with the budget constraint (23), we can define a

new state variable

ẋ2(θ) = p(θ)h(θ) = [x1(θ) + θu(θ)]h(θ) (36)

Based on (23), we can derive the following transversality
condition,

x2(θ)− x2(θ) = B. (37)

Thus, the Hamiltonian of the optimal control problem is
given by

H[x(θ), u(θ), λ(θ), θ]

=
h(θ)

u2(θ)
− λ1(θ)u(θ) + λ2(θ)[x1(θ) + θu(θ)]h(θ),

where λ1(θ) and λ2(θ) are co-state variables.
According to the Euler-Lagrange equation for optimal con-

trol problem, we have the following conditions,

∂H

∂u
=
−2h(θ)

u3(θ)
− λ1 + λ2θh(θ) = 0,

λ̇1(θ) = − ∂H
∂x1

= −λ2h(θ),

λ̇2(θ) = − ∂H
∂x2

= 0.

Thus, we can calculate the co-state variables as,

λ2(θ) = c1,

λ1(θ) = −c1H(θ) + c2,

where c1 and c2 are constants which can be calculated by the
transversality conditions (37) and (26).



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2834232, IEEE
Transactions on Information Forensics and Security

Then, the optimal contract [ε∗(θ), p∗(θ)] is given by,

ε∗(θ) = u∗(θ)

= 3

√
2h(θ)

c1θh(θ)− c1H(θ)− c2
,

p∗(θ) = x1(θ) + θε(θ)

= θε∗(θ)−
∫ θ

θ

ε∗(τ)dτ.

VI. SIMULATION STUDIES

In this section, we first validate the feasibility of the
proposed contracts, and then analyze the impact of different
system parameters on the aggregation error.

TABLE II: Simulation settings

Parameter Value
Number of PUs (n) 200

Privacy preference (θ) [5, 15]
Number of PUs’ types Feasibility 20

(k) Performance [5, 20]
Budget constraint Feasibility 1000

(B) Performance [500, 1000]

The simulation settings are shown in Table II. We assume
there are 200 PUs and their privacy preferences are from 5 to
15. For simplicity, we assume PUs’ privacy preferences follow
uniform distribution.

To illustrate the feasibility of the proposed contracts, we
show that the proposed optimal contracts satisfy both mono-
tonic property and incentive compatibility property, which are
discussed in Lemma 6 and Definition 6, respectively. The
number of PUs’ types k and the budget constraint B are set to
20 and 1000, respectively. To evaluate the impact of parameter
k and B on the aggregation error (defined in Lemma 2), we
set their value ranges to [5, 20] and [500, 1000], respectively.

A. Contract Feasibility

In this subsection, we illustrate that the proposed optimal
contracts satisfy both monotonic property and incentive com-
patibility property.
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Fig. 4 shows that ε decreases when PUs’ types increase.
Since smaller ε means higher PPL, Fig. 4 indicates that PUs
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with higher types tend to choose higher PPLs, which validates
the monotonic property. Besides, the result conforms to our
intuition that FC chooses to purchase less privacy from PUs
with higher privacy preferences to reduce the payment. On
another hand, we find that under the same budget constraint,
PUs’ PPLs under complete information scenario are lower
than which in incomplete information scenario. The reason
is that in complete information scenario, FC knows each PU’s
precise type, such that the contract designed for all types of
PUs can take zero utilities, as Lemma 3 shows. However, in
the incomplete information scenario, PUs’ precise types are
unknown to FC. Thus, only the highest type PUs achieve zero
utilities, whereas other types of PUs’ utilities remain strictly
positive, since otherwise, lower type PUs will pretend to be
higher types to achieve higher utilities.

In Fig. 5, we show the utility function of type-5, type-10
and type-15 PUs when they choose different types of contracts.
Notice that the utility functions are concave for all types of
PUs, and each type of PUs achieve their optimal utilities
when they choose their corresponding contract, e.g., type-5
PUs achieve their optimal utilities when they choose type-5
contract, which validates the incentive compatibility property.
Additionally, we observe that PUs with lower type achieve
higher utilities when they choose the same contract. The reason
is that the lower type PUs have lower privacy preference θi,
according to PUs’ utility definition uj = pj−θiεj ,∀j, smaller
θi result in higher utility.
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B. System Performance

In this subsection, we show the impacts of different system
parameters on the aggregation error.

Fig. 6 shows the impact of the amount of budget on the
aggregation error when other parameters are fixed. We observe
that the aggregation error α decreases when the amount of
budget increases, which indicates that larger amount of budget
leads to lower aggregation error. The reason is obvious, when
FC possesses more budget, it can provide more incentive
to stimulate PUs to choose lower PPLs, leading to lower
aggregation error.

In Fig. 7, we evaluate the impact of the number of PUs’
types on the aggregation error when other parameters are fixed.
Fig. 7 shows that, the aggregation error decreases with the
number of PUs’ types. By the reduced IR constraint pk −
θkεk = 0 and IC constraints pi−θiεi = pi+1−θiεi+1, FC can
set the utilities of higher types of PUs more close to 0, meaning
less additional payments. That is to say, the increase of PUs’
types results in more additional payments, which decreases the
aggregation error under a given budget.

VII. CONCLUSION

In this paper, we designed an incentive mechanism named
REAP to compensate PUs’ privacy losses. Unlike previous
mechanisms, we did not require FC to be trustworthy and
allow PUs to add well calibrated noises to their sensing
data before reporting them. Then, in order to achieve better
aggregation accuracy under a budget constraint, we devised a
contract-based incentive mechanism to induce PUs to choose
lower PPLs. Optimal contracts with closed form were derived
in both complete and incomplete information scenarios. Our
results were generalized to the continuous case. Extensive
simulations were conducted to validate the feasibility and
performance of our proposed incentive mechanism.

ACKNOWLEDGMENTS

This work is supported by NSFC under Grant 61429301,
U1401253.

REFERENCES

[1] X. Duan, C. Zhao, S. He, P. Cheng, and J. Zhang, “Distributed
algorithms to compute walrasian equilibrium in mobile crowdsensing,”
IEEE Transactions on Industrial Electronics, 2016.

[2] S. He, D.-H. Shin, J. Zhang, and J. Chen, “Near-optimal allocation algo-
rithms for location-dependent tasks in crowdsensing,” IEEE Transactions
on Vehicular Technology, 2016.

[3] R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. F. Abdelzaher,
“Greengps: a participatory sensing fuel-efficient maps application,” in
Proceedings of ACM MobiSys’10, pp. 151–164.

[4] J. Chen, K. Hu, Q. Wang, Y. Sun, Z. Shi, and S. He, “Narrowband
internet of things: Implementations and applications,” IEEE Internet of
Things Journal, vol. 4, no. 6, pp. 2309–2314, 2017.

[5] Y. Cheng, X. Li, Z. Li, S. Jiang, Y. Li, J. Jia, and X. Jiang, “Aircloud: a
cloud-based air-quality monitoring system for everyone,” in Proceedings
of ACM SenSys’14, pp. 251–265.

[6] S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher, “Smartroad:
Smartphone-based crowd sensing for traffic regulator detection and
identification,” ACM Transactions on Sensor Networks, vol. 11, no. 4,
p. 55, 2015.

[7] G. Yang, S. He, Z. Shi, and J. Chen, “Promoting cooperation by the
social incentive mechanism in mobile crowdsensing,” IEEE Communi-
cations Magazine, vol. 55, no. 3, pp. 86–92, 2017.

[8] Q. Zhang, Y. Wen, X. Tian, X. Gan, and X. Wang, “Incentivize crowd la-
beling under budget constraint,” in Proceedings of IEEE INFOCOM’15,
pp. 2812–2820.

[9] X. Zhang, G. Xue, R. Yu, D. Yang, and J. Tang, “Truthful incentive
mechanisms for crowdsourcing,” in Proceedings of IEEE INFOCOM’15,
pp. 2830–2838.

[10] H. Jin, L. Su, H. Xiao, and K. Nahrstedt, “Inception: incentivizing
privacy-preserving data aggregation for mobile crowd sensing systems,”
in Proceedings of ACM MobiHoc’17, pp. 341–350.

[11] W. Wang, L. Ying, and J. Zhang, “The value of privacy: Strategic data
subjects, incentive mechanisms and fundamental limits,” pp. 249–260.

[12] X. Yang, T. Wang, X. Ren, and W. Yu, “Survey on improving data utility
in differentially private sequential data publishing,” IEEE Transactions
on Big Data, 2017.

[13] D. Yang, G. Xue, X. Fang, and J. Tang, “Incentive mechanisms for
crowdsensing: Crowdsourcing with smartphones,” IEEE/ACM Transac-
tions on Networking, 2015.

[14] M. Zhang, L. Yang, X. Gong, and J. Zhang, “Privacy-preserving crowd-
sensing: Privacy valuation, network effect, and profit maximization,” in
Proceedings of IEEE GLOBECOM’16, pp. 1–6.

[15] H. Jin, L. Su, D. Chen, K. Nahrstedt, and J. Xu, “Quality of information
aware incentive mechanisms for mobile crowd sensing systems,” in
Proceedings of ACM MobiHoc’15, pp. 167–176.

[16] X. Zhang, Z. Yang, Z. Zhou, H. Cai, L. Chen, and X. Li, “Free market of
crowdsourcing: Incentive mechanism design for mobile sensing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 12, pp.
3190–3200, 2014.

[17] I. Koutsopoulos, “Optimal incentive-driven design of participatory sens-
ing systems,” in Proceedings of IEEE INFOCOM’13, pp. 1402–1410.

[18] L. Duan, T. Kubo, K. Sugiyama, J. Huang, T. Hasegawa, and J. Walrand,
“Incentive mechanisms for smartphone collaboration in data acquisition
and distributed computing,” in Proceedings of IEEE INFOCOM’12, pp.
1701–1709.

[19] T. Luo, S. S. Kanhere, H.-P. Tan, F. Wu, and H. Wu, “Crowdsourcing
with tullock contests: A new perspective,” in Proceedings of IEEE
INFOCOM’15, pp. 2515–2523.

[20] D. Peng, F. Wu, and G. Chen, “Pay as how well you do: A quality
based incentive mechanism for crowdsensing,” in Proceedings of ACM
MobiHoc’15, pp. 177–186.

[21] M. H. Cheung, R. Southwell, F. Hou, and J. Huang, “Distributed time-
sensitive task selection in mobile crowdsensing,” in Proceedings of ACM
MobiHoc’15, pp. 157–166.

[22] H. Xie, J. Lui, W. Jiang, and W. Chen, “Incentive mechanism and
protocol design for crowdsensing systems,” in Allerton, 2014.

[23] A. Ghosh and A. Roth, “Selling privacy at auction,” in Proceedings of
ACM EC’11, pp. 199–208.

[24] L. K. Fleischer and Y.-H. Lyu, “Approximately optimal auctions for
selling privacy when costs are correlated with data,” in Proceedings of
ACM EC’12, pp. 568–585.

[25] K. Ligett and A. Roth, “Take it or leave it: Running a survey when
privacy comes at a cost,” in Proceedings of WINE’12. Springer, pp.
378–391.



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2834232, IEEE
Transactions on Information Forensics and Security

[26] K. Nissim, S. Vadhan, and D. Xiao, “Redrawing the boundaries on
purchasing data from privacy-sensitive individuals,” in Proceedings of
ACM ITCS’14, pp. 411–422.

[27] Q. Li and G. Cao, “Providing efficient privacy-aware incentives for
mobile sensing,” in Proceedings of IEEE ICDCS’14, pp. 208–217.

[28] ——, “Providing privacy-aware incentives for mobile sensing,” in Pro-
ceedings of IEEE PerCom’13, pp. 76–84.

[29] H. Jin, L. Su, B. Ding, K. Nahrstedt, and N. Borisov, “Enabling privacy-
preserving incentives for mobile crowd sensing systems,” in Proceedings
of IEEE ICDCS’16, pp. 344–353.

[30] R. Zhu and K. G. Shin, “Differentially private and strategy-proof spec-
trum auction with approximate revenue maximization,” in Proceedings
of IEEE INFOCOM’15, 2015, pp. 918–926.

[31] R. Zhu, Z. Li, F. Wu, K. Shin, and G. Chen, “Differentially private spec-
trum auction with approximate revenue maximization,” in Proceedings
of ACM MobiHoc’14, pp. 185–194.

[32] C. Dwork, “Differential privacy: A survey of results,” in Proceedings of
TAMC’08. Springer, pp. 1–19.

[33] J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE
Transactions on Automatic Control, vol. 59, no. 2, pp. 341–354, 2014.

[34] N. Li, M. Lyu, D. Su, and W. Yang, “Differential privacy: From theory to
practice,” Synthesis Lectures on Information Security, Privacy, & Trust,
vol. 8, no. 4, pp. 1–138, 2016.

[35] M. M. Pai and A. Roth, “Privacy and mechanism design,” ACM SIGecom
Exchanges, vol. 12, no. 1, pp. 8–29, 2013.

[36] L. Xu, C. Jiang, Y. Chen, Y. Ren, and K. R. Liu, “Privacy or utility in
data collection? a contract theoretic approach,” IEEE Journal of Selected
Topics in Signal Processing, vol. 9, no. 7, pp. 1256–1269, 2015.

[37] Y. Zhang, L. Song, W. Saad, Z. Dawy, and Z. Han, “Contract-based
incentive mechanisms for device-to-device communications in cellular
networks,” IEEE Journal on Selected Areas in Communications, vol. 33,
no. 10, pp. 2144–2155, 2015.

[38] L. Duan, L. Gao, and J. Huang, “Cooperative spectrum sharing: a
contract-based approach,” IEEE Transactions on Mobile Computing,
vol. 13, no. 1, pp. 174–187, 2014.

[39] H. Zhuo, S. Zhong, and N. Yu, “A privacy-preserving remote data
integrity checking protocol with data dynamics and public verifiability,”
IEEE Transactions on Knowledge and Data Engineering, vol. 23, no. 9,
pp. 1432–1437, 2011.

[40] S. K. Sengijpta, “Fundamentals of statistical signal processing: Estima-
tion theory,” 1995.

APPENDIX A
PROOF OF LEMMA 1

Proof. Since the Laplacian mechanism is adopted,

Pr[A(di) = dobs]

Pr[A(d′i) = dobs]
=
f(dobs; di, bi)

f(dobs; d′i, bi)
,

where f(·;µ, σ) is the probability density function of the
Laplacian random variables with mean µ and variance 2σ2.

By the definition of γi-adjacency, we have,

f(dobs; di, bi)

f(dobs; d′i, bi)
≤ e

γi
bi ,

By the definition of differential privacy, it is clear that γibi =
εi, which concludes the proof.

APPENDIX B
PROOF OF LEMMA 2

Proof. The aggregation error of the randomized sensing data
can be expressed as

ŝ− s =
1

n

N∑
i=1

(di + ηi)−
1

n

N∑
i=1

di =
1

n

N∑
i=1

ηi.

Recall that the variance of Laplacian random variable ηi ∼
Lap(0, bi) is 2b2i , i.e., D(ηi) = 2b2i , we can derive that

D(
1

n

N∑
i=1

ηi) =
2

n2

n∑
i=1

b2i .

Therefore, from the Chebyshev’s inequality, we have

P [|s− ŝ| ≥ α] ≤ 2

α2n2

n∑
i=1

b2i ,

which indicates that the aggregated randomized sensing data
satisfies (α, 2

α2n2

∑n
i=1 b

2
i )-accuracy.

Thus, for a given confidence level δ ≤ 1, we have

α =

√
2γ

n
√

1− δ

√√√√ n∑
i=1

b2i

Substituting bi = γi
εi

into the above formula, and set γi = γ
for all i, we have

α =

√
2γ

n
√

1− δ

√√√√ n∑
i=1

1

ε2i
.

APPENDIX C
PROOF OF THEOREM 4

Proof. Substituting (8) to (7), we have

k∑
i=1

λiθiεi = B (38)

The Lagrangian of Problem 2 is given by

L(εi, α) =
k∑
i=1

[
λi
ε2i

+ αλiθiεi]− αB,

where α is the Lagrangian multiplier.
Based on the KKT condition, we have

∂L

∂εi
=
−2λi
ε3i

+ αλiθi = 0, ∀i.

Solving the above equation obtain εi = 3

√
2
αθ
− 1

3
i . Substitut-

ing this formula to (38), we have

3

√
2

α
=

B∑k
i=1 λiθ

2
3
i

.

Therefore, ε∗i is given by

ε∗i =
B∑k

j=1 λjθ
2
3
j

θ
− 1

3
i , (39)

Substituting (39) to p∗i − θiε∗i = 0, p∗i can be calculated as

p∗i =
B∑k

j=1 λjθ
2
3
j

θ
2
3
i . (40)
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APPENDIX D
PROOF OF LEMMA 7

Proof. We conduct the proof of this lemma by three steps.
Firstly, we prove that if pi − θiεi ≥ pi−1 − θiεi−1 satisfies,

then pi−θiεi ≥ pj−θiεj hold for all j ∈ {i−1, i−2, · · · , 1}.
Based on the IC constraints, we have

pi − θiεi ≥ pi−1 − θiεi−1, (41)
pi−1 − θi−1εi−1 ≥ pi−2 − θi−1εi−2. (42)

Formula (42) can be transformed to the following form

θi−1(εi−2 − εi−1) ≥ pi−2 − pi−1.

Recall the monotonic property in Lemma 6, we know that
θi−1 ≤ θi and εi−2 ≥ εi−1. Thus, we have θi(εi−2 − εi−1) ≥
pi−2 − pi−1 or pi−1 − θiεi−1 ≥ pi−2 − θiεi−2. Following the
same step, we have

pi − θiεi ≥ pi−1 − θiεi−1 ≥ · · · ≥ p1 − θiε1.

These inequalities lead to the correctness of this step.
Secondly, we prove that if pi−θiεi ≥ pi+1−θiεi+1 satisfies,

then pi−θiεi ≥ pj−θiεj hold for all j ∈ {i+1, i+2, · · · , k}.
Similar to the proof of the first step, we have

pi − θiεi ≥ pi+1 − θiεi+1 ≥ · · · ≥ p1 − θiε1,

which leads to the correctness of this step. Notice that for an
optimal contract, we have pi − θiεi = pi+1 − θiεi+1 holds,
since otherwise, we can always find a larger εi to achieve
lower aggregation error until the equal signs hold.

Thirdly, we prove that pi − θiεi = pi+1 − θiεi+1 implies
pi − θiεi ≥ pi−1 − θiεi−1.

It is obvious that θi(εi−1− εi) ≥ θi−1(εi−1− εi), rearrange
this inequality, we have

pi − θiεi ≥ pi + θi−1εi−1 − θi−1εi − θiεi−1.

Since pi − θiεi = pi+1 − θiεi+1, then pi−1 − θi−1εi−1 =
pi − θi−1εi hold, i.e., pi + θi−1εi−1 − θi−1εi = pi−1. Thus,
we have pi − θiεi ≥ pi−1 − θiεi−1.

In summary, pi − θiεi = pi+1 − θiεi+1 implies pi − θiεi ≥
pj − θiεj ,∀j 6= i, which ends the proof of this lemma.

APPENDIX E
PROOF OF THEOREM 8

Proof. Based on (18) and (19), we have

pk−1 − θk−1εk−1 = pk − θk−1εk
= θkεk − θk−1εk
= (θk − θk−1)εk (43)

Let ∆θk = θk − θk−1, we can rewrite (43) as pk−1 =
θk−1εk−1 + ∆θkεk.

Following the same procedure, we can conclude that

pi =

{
θiεi +

∑k
j=i+1 ∆θjεj , i 6= k,

θkεk, i = k,
(44)

where ∆θi is defined by (20).

Then, we have
k∑
i=1

λipi =
k−1∑
i=1

[λiθiεi + λi

k∑
j=i+1

∆θjεj ] + λkθkεk

=λkθkεk + λk−1θk−1εk−1 + λk−1∆θkεk

+ λk−2θk−2εk−2 + λk−2[∆θk−1εk−1 + ∆θkεk]

...
+ λ1θ1ε1 + λ1[∆θ2ε2 + · · ·+ ∆θkεk]

=εk[λkθk + ∆θk(λk−1 + · · ·+ λ1)]

+ εk−1[λk−1θk−1 + ∆θk−1(λk−2 + · · ·+ λ1)]

...
+ ε1λ1θ1.

Rearrange the above equation by εi, we can get
k∑
i=1

λipi =
k∑
i=1

Hiεi = B, (45)

where Hi is defined by (21).
Thus, the Lagrangian of Problem 4 is

L(ε, α) =

k∑
i=1

[
λi
ε2i

+ αHiεi]− αB,

where α is the Lagrangian multiplier.
Based on the KKT condition, we have

∂L

∂εi
=
−2λi
ε3i

+ αHi = 0.

Then, we can calculate εi as

εi =
3

√
2

α
(
λi
Hi

)
1
3 (46)

Substituting (46) to (45), we obtain

3

√
2

α
=

B∑k
j=1H

2
3
j λ

1
3
j

Thus, the optimal contract ε∗i is given by

ε∗i =
B∑k

i=1H
2
3
i λ

1
3
i

H
− 1

3
i λ

1
3
i (47)

Then, we can calculate the k-th contract as,

p∗k = θkε
∗
k =

B∑k
j=1H

2
3
j λ

1
3
j

θkH
− 1

3

k λ
1
3

k .

Substitute (47) to (44) and rearrange, we can achieve other
contracts when i 6= k.
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