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ABSTRACT
Differential privacy (DP), as a rigorous mathematical definition
quantifying privacy leakage, has become a well-accepted standard
for privacy protection. Combined with powerful machine learning
(ML) techniques, differentially private machine learning (DPML)
is increasingly important. As the most classic DPML algorithm,
DP-SGD incurs a significant loss of utility, which hinders DPML’s
deployment in practice. Many studies have recently proposed im-
proved algorithms based on DP-SGD to mitigate utility loss. How-
ever, these studies are isolated and cannot comprehensively mea-
sure the performance of improvements proposed in algorithms.
More importantly, there is a lack of comprehensive research to
compare improvements in these DPML algorithms across utility,
defensive capabilities, and generalizability.

We fill this gap by performing a holistic measurement of im-
proved DPML algorithms on utility and defense capability against
membership inference attacks (MIAs) on image classification tasks.
We first present a taxonomy of where improvements are located in
the ML life cycle. Based on our taxonomy, we jointly perform an
extensive measurement study of the improved DPML algorithms,
over twelve algorithms, four model architectures, four datasets, two
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attacks, and various privacy budget configurations. We also cover
state-of-the-art label differential privacy (Label DP) algorithms in
the evaluation. According to our empirical results, DP can effec-
tively defend against MIAs, and sensitivity-bounding techniques
such as per-sample gradient clipping play an important role in de-
fense. We also explore some improvements that can maintain model
utility and defend against MIAs more effectively. Experiments show
that Label DP algorithms achieve less utility loss but are fragile to
MIAs. ML practitioners may benefit from these evaluations to select
appropriate algorithms. To support our evaluation, we implement a
modular re-usable software, DPMLBench,1 which enables sensitive
data owners to deploy DPML algorithms and serves as a benchmark
tool for researchers and practitioners.
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1 INTRODUCTION
As machine learning continues to evolve, numerous fields are lever-
aging its power to advance their development [4, 26]. however,
this often involves the use of private data, such as medical records.
Previous studies have revealed that the models trained on private
data can leak information through a bunch of attacks, such as
membership inference [62], model inversion [23], and attribute
inference [46], which raises critical privacy and security concerns.

Differential privacy (DP) is a widely used notion to rigorously
formalize and measure the privacy guarantee based on a parameter
called privacy budget. Abadi et al. [1] proposed a general DPML
algorithm called differentially private stochastic gradient descent (DP-
SGD) by integrating per-sample clipping and noise perturbation to
the aggregated gradient in the training process. However, models
trained by DP-SGD normally perform badly with respect to model
utility. Recently, researchers proposed many improved algorithms
with better privacy-utility trade-off [9, 25, 53, 56, 60, 66, 78, 79, 87].
In the rest of this paper, we refer to DP-SGD as vanilla DP-SGD to
distinguish between DP-SGD and the improved algorithms.

The improved algorithms modify the vanilla DP-SGD from dif-
ferent aspects but are evaluated in isolation across various settings,
which cannot reveal the differences between each other. Further-
more, existing studies [31–33, 85] fail to report a complete and
practical analysis of general DPML algorithms in practical scenar-
ios. This motivates us to perform a holistic evaluation and analysis
of these improved DPML algorithms.

1.1 Our Contributions
Algorithm Taxonomy. We first propose a new taxonomy for the
state-of-the-art DPML algorithms based on their improved com-
ponent in the ML pipeline. Concretely, we divide the ML pipeline
into four phases: Data preparation, model design, model training,
and model ensemble (see Section 2.1 for details), and categorize the
DPML algorithms into each phase. We then perform a theoretical
and empirical analysis to obtain an extensive view of the impact of
differential privacy on ML.
Experimental Evaluation. In this paper, we concentrate on twelve
state-of-the-art DPML algorithms for image classification tasks. We
then conduct comprehensive experiments for these algorithms on
four model architectures and four benchmark image datasets to
jointly evaluate the tradeoff between privacy protection, model
utility, and defense effectiveness. Furthermore, we evaluate the
defensive capabilities of the DPML algorithms on both white-box
and black-box membership inference attacks (MIAs).

In addition, our measurement covers two state-of-the-art label
differential privacy (Label DP) algorithms. To the best of our knowl-
edge, we are the first to analyze the Label DP algorithms on utility
and defense empirically.
DPMLBench. We implement a toolkit called DPMLBench to sup-
port the comprehensive evaluation of DPML algorithms with re-
spect to model utility and MIA defense. With a modular design,
DPMLBench can easily integrate additional DPML algorithms, at-
tacks, datasets, and model architectures by implementing new func-
tional codes to the relevant modules. Our code is open-sourced1,
facilitating researchers to leverage existing DPML algorithms to
provide DP guarantee or benchmark new algorithms.

Main Findings. Our work reveals several interesting findings:
• Different improvement techniques can affect the privacy-utility
trade-offs of the algorithm from different perspectives. For ex-
ample, we find that reducing the dimension of the parameter
improves the performance of DPML on large models but may
impair utility when the privacy budget is large. In addition, DP
synthetic algorithms and algorithms in the model ensemble cate-
gory are the most robust in defending against MIAs.

• DP can effectively defend againstMIAs. Also, sensitivity-bounding
techniques such as per-sample gradient clipping play an impor-
tant role in defense.

• Some model architecture design choices for non-private ML mod-
els are ineffective for private ML models. For instance, using
Tanh as the activation function and GroupNorm can reduce the
utility loss on vanilla DP-SGD. However, we also find that using
Tanh and GroupNorm together would have a negative effect.

• Compared to standard DP, Label DP has less utility loss but is
more fragile to MIAs.

2 PRELIMINARIES
2.1 Machine Learning Pipeline
Figure 1 illustrates a typical ML pipeline, which consists of four
phases: Data preparation, model design, model training, and model
ensemble.

The data preparation phase aims to explore the underlying distri-
bution of data for learning algorithms. Commonly used techniques
in this phase include data cleaning [14], data labeling [24], and
feature extraction [34]. Feature extraction transforms the input
data into a low-dimensional subspace that reveals the most relevant
information [15]. Low dimensional information can downgrade the
difficulty of the following training procedures [77, 78, 86].

In the model design phase, we aim to select components such as
themodel architectures, loss functions, and optimization algorithms
that are appropriate for the task. There are plenty of studies on this
topic [28, 63].

Themodel training phase is the process of computing the follow-
ing optimization objective:

argmin
𝜃

1
|D𝑡𝑟𝑎𝑖𝑛 |

∑
(𝑥,𝑦) ∈D𝑡𝑟𝑎𝑖𝑛

L(𝑦,M(𝑥 ;𝜃 )),

where (𝑥,𝑦) is the data sample in the training datasetD𝑡𝑟𝑎𝑖𝑛 ;L and
M represent loss function andmodel architecture, respectively. The
parameters 𝜃 in model M are optimized to minimize the objective
function L on training data during the model training phase.

The model ensemble phase combines multiple models while de-
ploying the model. Previous studies show that aggregating multiple
models’ predictions can obtain better generalization performance
than a single model [51].

2.2 Differential Privacy
Differential privacy (DP) [20] is a rigorous mathematical definition
quantifying how much privacy preservation a mechanism can pro-
vide. DP provides a privacy guarantee by bounding the impact of a
single input on the mechanism’s output.

Definition 2.1 ((𝜖 , 𝛿)-Differential Privacy). Given two neighboring
datasets 𝐷 and 𝐷 ′ differing by one record, a mechanismM satisfies
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Figure 1: Machine learning pipeline.

(𝜖 , 𝛿)-differential privacy if
𝑃𝑟 [M(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 · 𝑃𝑟 [M(𝐷 ′) ∈ 𝑆] + 𝛿,

where 𝜖 is the privacy budget, and 𝛿 is the failure probability.
The privacy budget quantifies the maximum information a mech-

anism M can expose. A smaller privacy budget indicates better
privacy preservation. 𝛿 indicates the probability that M fails to
satisfy 𝜖-DP. When 𝛿 = 0, we achieve pure 𝜖-DP, a stronger notion,
and a more rigorous privacy guarantee.
BoundedDP andUnboundedDP. How to interpret neighboring
datasets distinguishes between bounded DP and unbounded DP [35].
In unbounded DP, D and D′ are neighbors if D can be obtained
from D′ by adding or removing one element. In bounded DP, D and
D′ are neighbors if D can be obtained from D′ by replacing one
element. When using bounded DP, two datasets should have the
same number of elements. Furthermore, any algorithms that satisfy
𝜖-unbounded DP also satisfy 2𝜖-bounded DP because replacing one
element can be achieved by removing then adding one element. All
algorithms in Table 1 satisfy the unbounded DP.
Gaussian Mechanism. Adding noise sampled from Gaussian dis-
tribution is a commonly used approach to achieve (𝜖 , 𝛿)-DP, known
as Gaussianmechanism [22]. Formally, applying the Gaussianmech-
anism to a function f can be defined as:

M(𝑑) = f (𝑑) + N(0, 𝑆2f · 𝜎
2),

where N(0, 𝑆2f · 𝜎
2) is the Gaussian distribution with mean 0 and

standard deviation 𝑆2f · 𝜎
2, where 𝜎 is called noise multiplier and

𝑆f is the sensitivity of function f .
Definition 2.2. (Sensitivity). Given two neighboring datasets 𝐷

and 𝐷 ′, the global sensitivity of a mechanism M, denoted by SM ,
is given below

SM = max
𝐷,𝐷′

|M(𝐷) −M(𝐷 ′) |.

Composition. The composition theorems calculate the total pri-
vacy budget when we apply DP on the private dataset multiple
times. The most straightforward composition strategy is summing
up the privacy budget of each individual DP algorithm. Formally,
for 𝑘 DP algorithms with privacy budget 𝜖1, 𝜖2, 𝜖3, · · · , 𝜖𝑘 , the total
privacy budget is 𝜖 = 𝜖1 + 𝜖2 + 𝜖3 + · · · + 𝜖𝑘 . Mironov [47] et al.
propose Rényi differential privacy to achieve a tighter analysis of
cumulative privacy budgets.

Definition 2.3 ((𝛼, 𝛿)-Rényi Differential Privacy (RDP) [47]). A
randomized mechanism M is said to satisfy 𝜖-Rényi differential
privacy of order 𝛼 (which can be abbreviated as (𝛼, 𝛿)-RDP), if for
any adjacent datasets 𝐷 , 𝐷 ′, it holds that

𝐷𝛼 (M(𝐷) | |M(𝐷 ′)) ≤ 𝜖,

where 𝐷𝛼 (M(𝐷) | |M(𝐷 ′)) is the 𝛼-Rényi divergence between the
distribution of M(𝐷) and the distribution of M(𝐷 ′). Parameter 𝛼
controls the momentum of the privacy loss random variable.

Note that larger 𝛼 leads to more weight being assigned to worst-
case events, e.g., (∞, 𝜖)-RDP is equivalent to 𝜖-DP. If 𝑀 satisfies

(𝛼, 𝜖)-𝑅𝐷𝑃 , it also satisfies (𝜖 + 𝑙𝑜𝑔 1
𝛿

𝛼−1 , 𝛿)-𝐷𝑃 . Applying 𝑘 algorithms
with (𝛼, 𝜖1)-RDP, (𝛼, 𝜖2)-RDP, · · · ,(𝛼, 𝜖𝑘 )-RDP on same dataset
sequentially leads to an algorithm with (𝛼, 𝜖1 + 𝜖2 + · · · + 𝜖𝑘 )-RDP.
By selecting𝛼 delicately, accumulating privacy loss in RDP and then
converting to DP can derive a tighter upper bound than composite
(𝜖, 𝛿)-DP directly.
Post-processing. The post-processing property guarantees that
no matter what additional processing one performs on the out-
put of an algorithm that satisfies (𝜖 ,𝛿)-DP, the composition of the
algorithm and the post-processing operations still satisfy (𝜖 ,𝛿)-DP.

2.3 Differentially Private Machine Learning
Abadi et al. [1] integrated differential privacy with stochastic gra-
dient descent (SGD) and proposed a general learning algorithm
named differential privacy stochastic gradient descent (DP-SGD).
Compared to SGD, DP-SGD introduced a fewmodifications to make
the algorithm satisfy differential privacy. Firstly, the sensitivity of
each gradient is bounded by clipping each gradient in the 𝑙2 norm.

𝑐𝑙𝑖𝑝 (g,𝐶) = g/𝑚𝑎𝑥 (1, | |g| |2
𝐶

) . (1)

Per-sample clipping bounds the contribution of each sample to
model parameters to 𝐶 . Moreover, DP-SGD applies a Gaussian
mechanism to the aggregated clipped gradient. Formally,

g̃ = g + N(0,𝐶2𝜎2), (2)
where g̃ is the noisy gradient used to update parameters and 𝜎

controls privacy level. After the above two steps, the gradients used
to update the parameters satisfy DP.

Nevertheless, gradient clipping and noise perturbation introduce
deviation in the training process, which impairs the model’s utility.
Recently, researchers proposed a number of improved DPML algo-
rithms to reduce the utility loss incurred by vanilla DP-SGD [54,
56, 66, 77]. However, these improved DPML algorithms were evalu-
ated on different models and datasets with different assumptions.
Therefore, it is a pressing need to design a holistic benchmark to
comprehensively evaluate these DPML algorithms to gain a deeper
insight.



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chengkun Wei et al.

Table 1: Overview and comparison of DPML algorithms. *: Evaluation is based on subsequent private model training on gener-
ated data. : same as non-private training. : with modification but no noise adding. : with modification and noise adding.

Algorithms Auxiliary Data Private Data Model Architecture Gradient Loss Function Perturbation

Data Preparation
Hand-DP Gradient
PrivSet * Input
DPGEN * Input

Model Design
TanhAct Gradient
FocalLoss Gradient

Model Training

Vanilla DP-SGD Gradient
RGP Gradient
GEP Gradient

AdpAlloc Gradient
AdpClip Gradient

Model Ensemble
PATE Input

Priv-kNN Input

2.4 Membership Inference in Machine
Learning Models

The MIAs have become one of the most widely studied [49, 59]
attacks against ML models after Shokri et al. proposed in [62]. The
MIA aims to infer whether a data sample is used to train the target
ML model.

Formally, MIA A can be defined as:
A : I,M, x −→ {0, 1},

where I is the auxiliary knowledge of adversary, M is the model
to be attacked, and x is a data sample. A can be seen as a binary
classifier, where 1 means the data sample x is used for training
modelM, namely a member, and 0 otherwise. It is natural to use
MIAs to evaluate the defensive capabilities of DPML algorithms, as
in many previous studies did [32, 33, 64].

Based on the information an attacker can obtain, MIAs can be
classified into two categories: White-box and black-box. The white-
box attacks have full access to the target model, while black-box
attacks only have query access to the target model and obtain
the prediction confidence vector. We adopt both types of MIAs to
comprehensively evaluate the defensive capabilities of the DPML
algorithms (in Section 5.3).

3 TAXONOMY
In this section, we provide an overview of our taxonomy and give
survey-style descriptions of the DPML algorithms.

3.1 Overview
We first propose a new taxonomy for the DPML algorithms based
on the component they improve in the ML pipeline discussed in
Section 2.1. We introduce this taxonomy due to the following rea-
sons: (1) The training phases of ML are independent, meaning the
improvements in different phases might be combined to achieve
better model utility. (2) It provides future researchers with a clear
roadmap to improve the DPML algorithms, which we hope can
benefit the community. (3) It is domain-agnostic and can be easily
extended to evaluate the DPML algorithms in other domains, such
as graph and NLP data.

Table 1 summarizes the improved DPML algorithms and their
corresponding categories. We also discuss the properties of the

DPML algorithms. For instance, DP-SGD falls in the model training
category and modifies the gradient to provide the DP guarantee,
whereas PATE belongs to the model ensemble category and lever-
ages auxiliary data to provide a DP guarantee. Auxiliary data gen-
erally have the same distribution as sensitive data but is publicly
available, which is a common assumption in DPML [53, 77, 86].
Data Preparation. The algorithms in this category pre-process
the original training data. Feature extraction and DP synthetic data
are two typical approaches in this category. Feature extraction aims
to reduce the difficulty of private training. Using a pre-trained
network before classifier [1, 38, 79] can be seen as a variant of
feature extraction. DP synthetic data aims to provide a DP guarantee
for training data. Applying DP mechanisms to data directly, such as
the Gaussian mechanism, downgrades the utility of data, especially
when data is in high dimension (e.g., image). DP synthetic data is
an alternative that aims to generate data in a DP manner with a
similar distribution as sensitive data. Training models on synthetic
data with traditional ML algorithms can derive a model with DP
guaranteed according to post-processing property [8, 9, 65]. In
this category, we pick three algorithms, of which Hand-DP [66]
leverages a feature extractor, and the other two (PrivSet [7] and
DPGEN [9]) belong to DP synthetic data algorithms.
Model Design. Algorithms in this category focus on designing
more adaptedmodel designs to DPML. Deep learning in non-private
settings has been widely studied, and many rules have been sum-
marized to train a standard neural network. However, these de-
sign guidelines do not perform well in vanilla DP-SGD [38] due
to gradient clipping and noise perturbation. For instance, larger
models often mean better performance in non-private settings.
However, smaller models tend to get better performance on vanilla
DP-SGD. Some existing studies focus on exploring more adapted
model design rules to DPML [13, 56]. We select two algorithms
in this category, and they propose improvements from the acti-
vation function (TanhAct [56]) and loss function (FocalLoss [60]),
respectively.
Model Training. Algorithms in this category explore DP mech-
anisms with less impact on model utility in the DP-SGD training
phase. The vanilla DP-SGD [1] bounds the 𝑙2-norm of gradient 𝑔
by clipping the gradient to the threshold 𝐶 ; thus, a straightforward
improvement strategy is to find an optimal clipping strategy [2, 58].
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On the other hand, the noise perturbation leads to bias duringmodel
updating, which impairs the model’s utility. Therefore, designing a
better noise perturbation mechanism to alleviate the noise effect is
another optimization option [77, 78, 86]. We select four algorithms
in this category, excluding vanilla DP-SGD. AdpClip [2] proposes
an improved clipping strategy, and the rest of them (RGP [78],
GEP [77], and AdpAlloc [79]) explore better noise perturbation
mechanisms.
Model Ensemble. This category contains algorithms providing
DP guarantee through the model ensemble. The vanilla DP-SGD
has poor scalability because it requires modifications to the training
process. Papernot et al. [53] propose Private Aggregation of Teacher
Ensemble (PATE) by leveraging model ensemble. PATE treats the
training phase of the model as a black box so that it has better
scalability than vanilla DP-SGD for less modification to the training
process. DP mechanism is applied while aggregating the prediction
of multiple models. Since then, some DPML algorithms based on
the model ensemble have emerged [54, 87]. We select PATE and
Priv-kNN in our measurement.

3.2 Data Preparation
Hand-DP [66]. Tramer et al. leverage Scattering Network (Scatter-
Net) [52], a feature extractor that encodes images using a cascade
of wavelet transforms to extract the features. To achieve the DP
guarantee, they fine-tuned a model on top of extracted features
through DP-SGD.
DPGEN [9]. It is an instantiation of the DP variant of the Energy-
based Model (EBM) [19, 40], which aims to privatize Langevin
Markov Chain Monte Carlo (MCMC) sampling method [74] to
synthesize images, of which an energy-based network guides the
movement directions. DPGEN achieves DP by using Randomized
Response (RR) in movement direction selection. Compared to other
DP-SGD based synthesis methods [65, 73], DPGEN can generate
higher-resolution images.
PrivSet [7]. It leverages dataset condensation to generate data
differentially private. It directly optimizes for a small set of samples
promising to derive approximate results under downstream tasks
instead of imitating the complete data distribution. More specifi-
cally, they use DP-SGD to optimize a gradient-matching objective
for the downstream task that minimizes the difference between the
gradient on the real data and the generated data.

3.3 Model Design
TanhAct [56]. Considering the need for DP to bound sensitivity,
Papernot et al. [56] replace ReLU with tempered sigmoid as the
activation function. The authors found that the bounded property
of tempered sigmoid functions, especially Tanh, can effectively limit
the 𝑙2-norm of the gradient while training models with DP-SGD.
Thus, less information can be lost in gradient clipping.
FocalLoss [60]. It introduces a loss function adapted to vanilla
DP-SGD, which combines three terms: The summed squared error
LFocal , the focal loss LSSE [42], and a regularization penalty on the
intermediate pre-activations LReg . These terms consider conver-
gence speed, emphasis on complex samples, and sensitivity during
training. The new loss function can better control the gradient
sensitivity in the training procedure.

3.4 Model Training
RGP [78]. It adopts a reparametrization scheme to replace the
model weight in each layer with two low-dimensional weight ma-
trices and a residual weight matrix:

W → LR + W̃.stop_gradient () . (3)
By making the gradient carriers {L,R} consist of orthonormal vec-
tors, a projection of the gradient of W can be constructed from the
noisy gradients of L̃ and R̃. {L,R} are trained by DP-SGD separately
to achieve the DP guarantee and finally combined to obtain the
gradient for updating the model. Note that the dimensionality of L
and R is much smaller than that of W. Thus RGP can reduce the
storage consumption and the noise added to the model.
GEP [77]. Yu et al. observe that the number of noise increases
with the growth of model size in vanilla DP-SGD and figure out a
solution, GEP [77], to reduce the dimension of the gradient before
adding noise. GEP first computes an anchor subspace that con-
tains some gradients of public data via the power method. Then, it
projects the gradient of private data into the anchor subspace to
produce a low-dimensional gradient embedding and a small-norm
residual gradient. The two parts are applied with the DPmechanism
separately and combined to update the original weight. Compared
to RGP, GEP leverages public data to decompose the original model
parameters for dimensionality reduction.
AdpAlloc [79]. It proposes a dynamic noise-adding mechanism in-
stead of keeping noise multiplier 𝜎 constant every training epoch in
vanilla DP-SGD. It replaces the variance in the Gaussian mechanism
with a function of the epoch:

M(𝑑) = f (𝑑) + N(0, 𝑆2f · 𝜎
2
𝑡 ), (4)

the value of 𝜎𝑡 depends on the final privacy budget, epoch, and
schedule function. The schedule function defines how the noise
scale is adjusted during training. Yu et al. proposed several pre-
defined schedules. We select Exponential Decay in our evaluation,
which has the best average performance in [79]. The mathematical
form of Exponential Decay is 𝜎𝑡 = 𝜎0𝑒−𝑘𝑡 , where 𝑘 (𝑘 > 0) is decay
rate and 𝜎0 is the initial noise scale.
AdpClip [2]. It uses an adaptive clipping threshold mechanism,
which sets the clip threshold to a specified quantile of the update
norm distribution every epoch. The method sets clipping threshold
according to gradients distribution per epoch, which also consumes
privacy budgets. AdpClip was originally designed for federated
learning (FL) but can be extended to traditional centralized learning
scenarios.

3.5 Model Ensemble
PATE [53]. It first trains multiple teacher models with disjoint
private data. The teacher ensemble is later used to label the public
data, and the noise perturbation is applied to the voting aggregation
before generating a prediction. The student model, which gives
the final output, is trained from labeled public data and cannot
directly access private data. The privacy budget is determined by
the noise added to the votes and the number of queries to the
teacher ensemble. Additionally, PATE leverages a semi-supervised
learning method to reduce the queries to the teacher ensemble.
Priv-kNN [87]. In PATE, a larger number of teacher models lead
to a larger absolute lead gap while aggregating votes, potentially
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Figure 2: Overview of DPMLBench.

allowing for a larger noise level. At the same time, splitting data
makes each teacher model hold only partial original training data,
which causes a model utility drop. Thus, Zhu et al. [87] propose
a data-efficient scheme based on the private release of k-nearest
neighbor (kNN) queries to replace teacher ensemble, which avoids
splitting the training dataset. For every given data sample from the
public domain, Priv-kNN subsamples a random subset from the
entire private dataset. Then it picks the 𝑘 nearest neighbors from
the subset in feature space, equivalent to 𝑘 teachers’ prediction in
vanilla PATE.

4 DPMLBENCH
This section introduces DPMLBench, a modular toolkit designed
to evaluate DPML algorithms’ performance on utility and privacy.
Figure 2 illustrates the four modules of DPMLBench.

(1) Input. This module prepares the dataset and model for the
following modules. For dataset, it involves dataset partition
and preprocessing e.g., normalization. For the model, it con-
structs model architectures and does necessarymodifications
for private training (see Section 5.1).

(2) Training. This module performs the DPML algorithms to
train DPML models. It currently supports twelve different
DPML algorithms into four categories (see Section 3).

(3) Attack. This module performs two MIAs on models trained
from the training module.

(4) Analysis. This module evaluates the performance of DPML
algorithms on utility and privacy.

DPMLBench follows a modular design that makes it flexible
to integrate new algorithms, attacks, datasets, and models. We
envisage that DPMLBench can be used for the following purposes:

• As we have implemented twelve representative DPML algo-
rithms, DPMLBench enables data owners to train their privacy-
preserving models with these DPML algorithms efficiently.

• DPMLBench comprehensively assesses different DPML algo-
rithms in utility and privacy. Researchers can re-use DPMLBench
as a benchmark tool to evaluate other DPML algorithms and
attacks in the future.

• Since DPMLBench follows a modular design, modules are con-
nected through abstract interfaces. To integrate a new DPML
algorithm and attack or to extend DPMLBench into different
domains, users can re-implement processing functions in the
corresponding modules and reuse other modules directly.

Table 2: The testing accuracy, tailored AUC of MIAs in
black-box/white-box of baseline models. The number of
parameters follows each model name. (Accuracy(%)/black-
box/white-box)

Target Model MNIST FMNIST SVHN CIFAR-10

SimpleNet (0.17M) 98.42/0.50/0.50 88.04/0.54/0.54 87.69/0.64/0.53 69.50/0.78/0.72
ResNet (0.26M) 99.12/0.50/0.50 89.16/0.52/0.54 92.88/0.57/0.59 66.56/0.77/0.63

InceptionNet (1.97M) 99.18/0.51/0.50 90.92/0.56/0.53 95.08/0.55/0.57 83.52/0.71/0.68
VGG (128.8M) 98.70/0.50/0.52 90.74/0.59/0.56 91.91/0.62/0.56 72.96/0.78/0.73

5 EXPERIMENTS
Based on the proposed taxonomy, we present a series of compre-
hensive experiments to answer the following questions:

RQ1. What improvements in DPML algorithms are most effective
in maintaining model utility?

RQ2. What improvements in DPML algorithms are most robust in
defending MIAs?

RQ3. What is the impact of dataset and model architecture on
algorithms focusing on different stages?

5.1 Experimental Setup
DPML Algorithms. We implement twelve DPML algorithms;
their details can be found in Section 3. For GEP, RGP, Priv-kNN,
DPGEN, and PrivSet, we use implementations of authors and mod-
ify codes to adapt for our evaluation. The rest of the algorithms are
implemented by PyTorch [57] and Opacus [75].
Datasets. We conduct experiments on four datasets: MNIST [39],
FashionMNIST [72], CIFAR-10 [36], and SVHN [50], which are
widely used in evaluating privacy-preserving machine learning [1,
53, 77, 87]. We resize all images to 32x32 in our evaluation.

Since our attacks are all under the assumption that the attacker
has an auxiliary dataset that shares similar distribution with the
training data, we split each dataset into four disjoint parts: shadow
training set, shadow testing set, target training set, and target test-
ing set. Additionally, we allocate 90% of the data originally used for
testing as public data for the algorithms in the ensemble category.
Model Architectures. We focus on four model architectures, in-
cluding ResNet20 [28], VGG16 [63], InceptionNet [37], and a simple
three convolution layer network as SimpleCNN. Batch normaliza-
tion makes each sample’s normalized value depend on its peers
in a batch, making it hard to restrict a single data contribution
to the output. To adapt differential privacy, we replace all batch
normalization [30] with group normalization [71]. We regard the
models trained with the same hyperparameters without DP as the
baseline to evaluate utility loss. Table 2 shows the performance of
the baseline model across datasets, including testing accuracy and
tailored AUC against black-box/white-box MIAs.

We use MLPs for black-box and white-box model architecture for
the attack implementation as in [43, 49]. Due to space limitations,
we refer the readers to Appendix E of [70] for more details.
Hyperparameters. Weuse Rényi DP to accumulate the overall pri-
vacy budget and precompute the required noise scale (𝜎 in DP-SGD)
numerically [1, 48]. We keep 𝛿 = 10−5 and use different privacy
budgets: 𝜖 = {0.2, 0.3, 0.4, 0.5, 1, 2, 4, 8, 100, 1000}. All algorithms’
clipping threshold 𝐶 are fixed to 4 unless the algorithm has special
clipping strategies.
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Table 3: Overview of algorithms’ utility loss on different model architectures, datasets, and privacy budgets. For each privacy
budget, we bold the value with the best performance (with the smallest value of utility loss). The experimental results of GEP
on VGG are unavailable due to memory limits.

SimpleCNN ResNet VGG
0.2 1 4 100 1000 0.2 1 4 100 1000 0.2 1 4 100 1000

M
N
IS
T

Hand-DP 89.19 ± 1.04 18.98 ± 1.67 8.46 ± 0.35 4.19 ± 0.17 3.73 ± 0.14 24.38 ± 1.93 11.58 ± 0.76 5.73 ± 0.46 2.88 ± 0.50 2.01 ± 0.68 88.63 ± 1.25 88.89 ± 1.23 90.46 ± 0.16 7.98 ± 0.15 3.80 ± 0.78
PrivSet 77.26 ± 5.89 47.54 ± 9.23 30.86 ± 2.26 19.72 ± 2.28 17.58 ± 2.60 89.70 ± 0.20 82.24 ± 2.70 57.01 ± 6.11 20.83 ± 3.60 17.86 ± 2.67 81.36 ± 11.11 58.61 ± 5.03 51.32 ± 22.10 52.40 ± 27.64 66.52 ± 18.65
DPGEN 60.99 ± 8.05 88.26 ± 0.83 14.95 ± 0.58 2.48 ± 0.43 2.70 ± 0.26 70.75 ± 4.84 84.07 ± 3.96 73.73 ± 3.77 3.64 ± 0.36 3.79 ± 0.25 90.08 ± 0.04 90.08 ± 0.04 58.28 ± 30.47 1.76 ± 0.14 2.20 ± 0.28
TanhAct 85.19 ± 2.58 18.30 ± 1.29 3.13 ± 0.39 1.74 ± 0.14 1.74 ± 0.16 38.16 ± 3.27 18.61 ± 3.42 7.05 ± 0.54 3.89 ± 0.44 3.12 ± 0.19 90.21 ± 0.04 89.59 ± 0.12 90.15 ± 0.31 6.14 ± 0.08 1.91 ± 0.03
FocalLoss 87.99 ± 1.97 29.11 ± 2.59 7.44 ± 0.40 3.32 ± 0.07 2.40 ± 0.01 43.09 ± 4.17 10.99 ± 1.70 6.32 ± 0.85 2.72 ± 0.12 1.78 ± 0.12 82.10 ± 1.77 88.16 ± 0.01 88.91 ± 0.39 11.46 ± 11.64 3.66 ± 0.52
DP-SGD 89.61 ± 1.12 21.98 ± 0.19 7.50 ± 0.42 3.58 ± 0.21 3.04 ± 0.23 28.17 ± 3.48 11.33 ± 1.17 5.38 ± 0.85 2.88 ± 0.35 2.24 ± 0.36 88.79 ± 1.02 88.74 ± 0.47 90.56 ± 0.77 13.23 ± 4.42 3.55 ± 0.06
RGP 36.65 ± 1.04 13.23 ± 0.78 10.17 ± 1.02 6.72 ± 0.09 6.37 ± 0.23 31.87 ± 2.62 21.24 ± 3.90 33.03 ± 7.12 34.06 ± 5.62 37.66 ± 8.97 90.30 ± 0.29 6.59 ± 0.95 3.86 ± 0.27 6.33 ± 2.24 4.78 ± 0.14
GEP 90.30 ± 0.29 90.25 ± 0.34 14.37 ± 1.83 2.67 ± 0.52 1.52 ± 0.02 86.22 ± 2.16 17.61 ± 1.35 4.36 ± 0.22 1.00 ± 0.04 0.46 ± 0.26 - - - - -
AdpAlloc 89.23 ± 0.81 18.79 ± 1.24 6.57 ± 0.20 3.59 ± 0.45 3.14 ± 0.29 24.26 ± 3.70 10.04 ± 2.13 4.91 ± 0.59 3.25 ± 0.57 2.48 ± 0.37 90.24 ± 0.22 89.00 ± 0.58 89.85 ± 1.04 6.44 ± 0.26 3.12 ± 0.04
AdpClip 88.17 ± 4.04 75.55 ± 11.05 7.79 ± 0.37 8.00 ± 0.30 8.10 ± 0.28 59.66 ± 2.95 7.46 ± 0.53 4.85 ± 0.40 4.17 ± 0.35 4.21 ± 0.41 88.92 ± 0.22 88.13 ± 0.24 89.06 ± 0.75 14.00 ± 2.44 4.78 ± 0.15
PATE 82.83 ± 3.94 71.81 ± 4.09 33.36 ± 12.33 11.89 ± 4.04 10.98 ± 2.78 90.86 ± 0.09 85.89 ± 6.08 30.74 ± 15.79 7.12 ± 3.66 10.38 ± 1.16 84.94 ± 3.47 76.17 ± 3.78 44.08 ± 23.93 32.15 ± 40.09 32.66 ± 39.74
Priv-kNN 61.22 ± 2.13 34.97 ± 3.37 33.13 ± 0.62 34.77 ± 0.94 33.80 ± 1.56 25.03 ± 5.76 9.70 ± 0.87 8.43 ± 0.63 9.30 ± 0.74 9.91 ± 1.25 49.05 ± 1.62 17.80 ± 2.17 17.16 ± 0.94 16.29 ± 0.39 14.74 ± 1.43

CI
FA

R-
10

Hand-DP 90.06 ± 0.16 86.88 ± 4.04 48.67 ± 0.96 43.28 ± 0.74 44.14 ± 0.18 84.29 ± 2.26 58.34 ± 0.50 50.74 ± 0.58 41.95 ± 2.33 39.29 ± 3.11 90.03 ± 0.18 89.67 ± 0.07 89.86 ± 0.12 79.74 ± 7.71 37.58 ± 0.82
PrivSet 88.85 ± 0.65 87.78 ± 1.28 86.78 ± 0.71 88.83 ± 0.94 89.43 ± 0.78 89.56 ± 0.83 89.28 ± 0.37 89.45 ± 1.18 87.91 ± 2.03 85.43 ± 2.43 89.77 ± 0.29 88.14 ± 0.78 89.07 ± 0.38 90.04 ± 0.26 87.64 ± 2.81
DPGEN 90.16 ± 0.11 89.86 ± 0.09 89.66 ± 0.70 69.98 ± 2.28 76.98 ± 2.26 90.00 ± 0.35 90.00 ± 0.16 90.59 ± 1.39 79.51 ± 1.01 83.38 ± 4.20 90.52 ± 0.30 89.72 ± 0.21 89.47 ± 0.29 87.24 ± 3.07 88.86 ± 1.43
TanhAct 89.74 ± 0.64 69.95 ± 1.13 45.39 ± 0.92 32.93 ± 0.55 32.21 ± 0.21 82.55 ± 1.17 62.11 ± 0.33 55.52 ± 0.32 48.95 ± 1.17 49.28 ± 2.73 90.22 ± 0.00 90.07 ± 0.25 90.13 ± 0.10 64.46 ± 1.43 34.26 ± 0.28
FocalLoss 89.88 ± 0.08 88.17 ± 2.46 52.42 ± 0.47 38.55 ± 0.79 38.47 ± 0.90 84.36 ± 2.43 62.12 ± 0.53 52.06 ± 0.43 40.65 ± 2.12 39.00 ± 2.98 90.17 ± 0.26 89.75 ± 0.15 89.85 ± 0.23 66.36 ± 6.19 36.60 ± 0.33
DP-SGD 89.80 ± 0.30 89.13 ± 1.30 48.79 ± 0.24 40.03 ± 0.93 40.48 ± 0.86 81.92 ± 2.61 58.32 ± 0.44 49.57 ± 1.76 41.17 ± 2.67 38.66 ± 3.80 90.20 ± 0.56 89.38 ± 0.49 89.73 ± 0.09 89.81 ± 0.12 35.15 ± 0.35
RGP 90.15 ± 0.02 61.91 ± 1.32 58.52 ± 1.34 54.28 ± 0.68 54.41 ± 0.92 74.48 ± 0.54 65.24 ± 0.88 67.27 ± 2.00 66.38 ± 0.93 66.56 ± 0.82 90.16 ± 0.01 81.87 ± 4.19 53.66 ± 1.25 53.49 ± 0.09 54.37 ± 0.49
GEP 90.16 ± 0.00 90.16 ± 0.01 90.16 ± 0.00 35.11 ± 0.20 31.90 ± 0.24 88.68 ± 2.19 85.19 ± 0.20 46.72 ± 0.73 30.45 ± 0.36 26.64 ± 0.93 - - - - -
AdpAlloc 90.04 ± 0.30 89.89 ± 0.18 47.97 ± 0.57 38.49 ± 0.47 39.16 ± 0.88 80.04 ± 2.19 57.88 ± 0.86 48.86 ± 1.03 43.83 ± 1.52 42.22 ± 2.19 90.06 ± 0.05 89.57 ± 0.05 89.99 ± 0.08 51.42 ± 0.58 35.46 ± 0.42
AdpClip 89.71 ± 0.23 89.79 ± 0.26 64.50 ± 2.33 35.64 ± 0.82 34.12 ± 0.42 86.57 ± 1.43 64.08 ± 0.77 48.05 ± 1.15 37.17 ± 1.27 33.55 ± 1.98 89.70 ± 0.34 89.86 ± 0.68 90.21 ± 0.19 89.69 ± 0.01 44.47 ± 0.07
PATE 90.19 ± 1.30 91.70 ± 1.44 89.25 ± 0.53 83.30 ± 2.42 83.06 ± 0.54 88.34 ± 0.41 87.60 ± 1.13 85.99 ± 2.08 82.05 ± 1.18 83.50 ± 1.43 90.05 ± 1.23 91.60 ± 0.49 91.06 ± 1.11 89.92 ± 1.56 90.02 ± 2.79
Priv-kNN 89.52 ± 0.45 89.38 ± 0.12 88.94 ± 0.17 90.19 ± 0.05 90.29 ± 0.40 87.77 ± 1.70 81.35 ± 1.56 77.38 ± 1.27 74.96 ± 0.34 74.43 ± 1.27 89.85 ± 1.27 87.26 ± 2.55 85.42 ± 2.04 84.81 ± 1.32 84.41 ± 1.56

We use the hyperparameters obtained by grid search on DP-SGD
if the original paper does not mention the setting. While searching
hyperparameters, we refer to the guides of recent studies on hy-
perparameter settings for private training [16, 38]. For simplicity,
we ignore the privacy leakage caused by hyperparameter tuning in
our experiment [55]. For the attack models, we follow the settings
in [43], where the batch size is 64, the epoch is 50, the optimizer is
Adam, and the learning rate is 10−5. The detailed hyperparameter
settings can be found in Appendix A of our technical report [70].
Metrics. Following previous studies [32, 33, 43, 85], we use accu-
racy ACC to evaluate the models’ utility and the area under ROC
curve (AUC) to evaluate the defense ability of the model. In MIAs,
AUC lower than 0.5 indicates that the inference attack performs
worse than a random guess and tends to infer non-members as
members. Thus we set the lower bound of AUC to 0.5 for analysis
convenience, indicating that AUC=0.5 implies no privacy leakage.
We process the AUC metric as follows:�AUC = max(AUC, 0.5),
We name �AUC as tailored AUC, which is always between 0.5 and 1.

To compare the performance of DPML algorithms and non-
private algorithms more directly, we define proportional metric
utility loss and privacy leakage, respectively:

Utility Loss = 1 −
ACCM𝑝𝑟𝑖

ACCM𝑏𝑎𝑠𝑒

, (5)

Privacy Leakage =
�AUCM𝑝𝑟𝑖

− 0.5�AUCM𝑏𝑎𝑠𝑒
− 0.5

, (6)

whereM𝑝𝑟𝑖 presents a private model trained by a DPML algorithm
and M𝑏𝑎𝑠𝑒 presents a non-private model trained by vanilla SGD
with the same settings asM𝑝𝑟𝑖 . The utility loss denotes the percent-
age loss in accuracy of the DP model on the same test set relative
to the normal model. The private leakage denotes the proportion
of privacy models’ privacy leakage compared to the normal model.

5.2 Evaluation on Utility Loss
Overview. Table 3 reports an overview of algorithms’ utility loss
across model architectures, datasets, and privacy budgets. Due to
space limitations, we only show part of the experimental results. We
refer the readers to Appendix D (Table 10) of [70] for the rest results,
which shows a similar trend as Table 3. The experimental results for
GEP on InceptionNet and VGG are unavailable due to memory limit.
For brevity, we use a ⟨𝐴𝑙𝑔,𝑀𝑜𝑑𝑒𝑙, 𝐷𝑎𝑡𝑎𝑠𝑒𝑡, 𝜖⟩ tuple to denote the
𝑀𝑜𝑑𝑒𝑙 trained with 𝐴𝑙𝑔 on 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 in the case of privacy budget
𝜖 . For instance, ⟨RGP, 𝑅𝑒𝑠𝑁𝑒𝑡, 𝑀𝑁𝐼𝑆𝑇 , 0.2⟩ indicates the ResNet
model trained by RGP with a privacy budget of 0.2 on MNIST.

We observe that the utility loss decreases with increasing pri-
vacy budget for all algorithms, which intuitively shows that the
noise scale hurts the model’s utility. However, the utility loss varies
widely across algorithms for the same privacy budget. We analyze
improved DPML algorithms’ utility loss across four categories in
the following. NonPrivate in figures denotes the model trained by
normal SGD without DP.
Data Preparation. Initially, in [9], the classifier was trained on
private data in order to label the synthetic data, and then the labeled
dataset was used to train the target model. This is similar to labeling
public data through teacher ensemble in [53], which will consume
additional privacy budgets. However, [9] does not count this part.
In our implementation, we use data that does not overlap with
private data to train the labeling model.

Figure 3a illustrates the accuracy comparison between algo-
rithms in the data preparation category and vanilla DP-SGD. The
plot shows that Hand-DP outperforms DPGEN and PrivSet in low
privacy budget generally. Hand-DP’s accuracy is equivalent to
vanilla DP-SGD and has a slight advantage on VGG. The perfor-
mance of DPGEN and PrivSet is highly relative to the quality of
synthetic data. When manually inspecting the generated data, we
observe that there exist images with wrong labels and many sim-
ilar, even identical images (e.g., mode collapse). More effort on
hyperparameter tuning and manual data filtering for DP synthetic
algorithms can improve the performance.
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(a) Data Preparation
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(b) Model Design
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(c) Model Training
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(d) Model Ensemble
Figure 3: Accuracy comparison of the DPML algorithms in four categories, where the x-axis represents privacy budgets.

Moreover, Tramer et al. propose using the non-learned hand-
crafted feature to train a linear model with DP-SGD [66]. Thus, we
perform the same experiment for Hand-DP on simple MLP. The ex-
periment results on CIFAR-10 are shown in Table 7 in Appendix D
of our technical report [70]. Comparing other model architectures,
we observe that the simple MLP only has an advantage when the
privacy budget is relatively small (e.g., 𝜖 < 0.5 ). Thus, we exclude

the MLP in subsequent experiments to maintain uniformity with
other algorithms.
Model Design. Figure 3b illustrates the performance of algorithms
in the model design category and vanilla DP-SGD.

In general, TanhAct outperforms vanilla DP-SGD and FocalLoss
on SimpleCNN and VGG. However, neither TanhAct nor FocalLoss
performs better than vanilla DP-SGD on ResNet and InceptionNet,
TanhAct’s performance is even much worse than vanilla DP-SGD on
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Figure 4: Accuracy of SimpleCNN models with/without
GroupNorm layer trained by DP-SGD with ReLU and Tanh
activation function across various privacy budgets.

ResNet. [56] shows that TanhAct has a better utility-privacy trade-off
on their models, whose architecture is similar to SimpleCNN. The
difference among the architectures is that ResNet and InceptionNet
both have GroupNorm layers while the others do not.

To figure out the impact of the GroupNorm layer and activa-
tion function, we add the GroupNorm layer before the activation
function of the SimpleCNN and evaluate the performance of the
vanilla DP-SGD (DP-SGD with ReLU) and TanhAct (DP-SGD with
Tanh) respectively (in Figure 4). We observe that the GroupNorm
layer improves the accuracy of the model overall. However, the im-
provement gap shrinks as the privacy budget increases when using
Tanh as an activation function, e.g.DP-SGD (Tanh) w/o GroupNorm
outperforms DP-SGD (Tanh) with GroupNorm when the privacy
budget is greater than 10. The connection between the activation
function and the normalization layer needs further exploration.
Model Training. Figure 3c illustrates the accuracy comparison
of algorithms in the model training category and vanilla DP-SGD.
When the privacy budget is large, the accuracy of GEP exceeds
the baseline in some settings (e.g. ⟨GEP, 𝑅𝑒𝑠𝑁𝑒𝑡,CIFAR-10, 1000⟩)
because of leveraging public data.

When the privacy budget is small, RGP is the only algorithm in
this category to achieve acceptable performance on VGG. Model
parameter dimensionality reduction is an effective technique to
solve large models’ inability to adapt to DP. Nevertheless, there is
a significant performance degradation when the privacy budget is
large for RGP. We suspect the reason is that reparametrization not
only reduces the noise scale in private training but also leads to
information loss in the gradient. When the noise scale is small, the
information loss caused by reparametrization is higher than the
mitigation effect on noise perturbation.

We train models by using RGP (w/o DP) and vanilla SGD, respec-
tively; the difference between them iswhether they use reparametriza-
tion. Overall, the accuracy of RGP (w/o DP) is lower than that of
SGD under the same settings across all datasets and model archi-
tectures. The results can be found in Table 8 in Appendix D of our
technical report [70]. The results echo our previous speculation
that reparametrization reduces noise scale in private training but
impairs performance in non-private settings.
Model Ensemble. Figure 3d illustrates the accuracy of the algo-
rithms in the model ensemble category and vanilla DP-SGD.

Note that Priv-kNN and PATE use noise screening technique [54,
87], which ignores the data with low confidence in teacher ensem-
bles to improve the utility-privacy tradeoff. We do not use this
technique in our implementation because the privacy budget is
given in our settings and the noise scale is precomputed, which
requires a fixed number of queries.

Table 4: Impact of per-sample clipping on model utility and
defense to attacks. The table reports the accuracy and the
AUC of models on CIFAR-10 with different privacy guaran-
tees. Inf indicates normal SGD; Inf (Clip) denotes normal
SGD with per-sample clipping.

8 100 1000 Inf(clip) Inf

SimpleCNN ACC (%) 58.20 60.66 60.44 57.96 69.22
AUC 0.52 0.52 0.53 0.52 0.78

ResNet ACC (%) 53.80 61.50 65.90 57.42 69.70
AUC 0.51 0.52 0.53 0.54 0.65

InceptionNet ACC (%) 58.00 64.60 69.40 72.80 83.68
AUC 0.51 0.51 0.52 0.58 0.71

VGG ACC (%) 10.36 10.02 64.66 67.72 71.36
AUC 0.50 0.50 0.52 0.59 0.78

When implemented on VGG, Priv-kNN can preserve an equiv-
alent performance as other models, whereas PATE’s performance
plunges to random guesses. A large number of teachers can impair
the noise effect, while the amount of data allocated to each teacher
model is too small for a large model such as VGG to converge. The
results echo the introduction in Section 3.5, PATE is hard to get a
good trade-off on the number of teacher models.

When implemented on other model architectures, Priv-kNN out-
performs PATE with a low privacy budget and vice versa with a
high privacy budget. PATE and Priv-kNN both show higher accuracy
at some specific settings [53, 87]. However, they both fail to obtain
a better utility-privacy trade-off than vanilla DP-SGD at most set-
tings in our measurements. We suspect that semi-supervised training
techniques introduce more randomness and require fine-grained hy-
perparameter tunning, which leads to a high standard deviation as
our experimental results show.

5.3 Evaluation on Defensive Capabilities
Generally, all algorithms’ tailored AUC is around 0.5, whichmeans a
strong defense against the MIA compared to the baseline results Ta-
ble 2. We omit the tailored AUC table due to space limitation, and
the concrete data can refer to our arxiv version[70]. Thus, we use
privacy leakage as the metric for detailed analysis in the following.

Figure 5 illustrates the privacy leakage of models trained by al-
gorithms in a per-category manner. Compared to vanilla DP-SGD,
the modification of RGP and FocalLoss change the feature of con-
fidence vectors, resulting in training and testing data having a
different distribution for the attack model. Thus, RGP and Focal-
Loss have a remarkable advantage over black-box and white-box
attacks in general. Refer to Figure 5d and Figure 5a. We observe that
PATE, Priv-kNN, DPGEN, and PrivSet remain nearly free of privacy
leakage. It is because the target models do not access private data.
PATE and Priv-kNN use the knowledge transferred from teacher
ensemble, and DPGEN and PrivSet only access generated data.
Role of Sensitivity-bounding Techniques. To explore the role
of sensitivity-bounding techniques in defending MIAs, we conduct
attacks on a model trained with normal SGD and per-sample clip-
ping to explore the impact of per-sample clipping on the defense.
The results are shown in Table 4.

We observe that the per-sample clipping has a strong defense
ability against MIAs with acceptable accuracy degradation com-
pared to the non-private model. Moreover, the defensive effects and
accuracy degradation are model dependent. For example, Inf(clip)
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(c) Model Training
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Figure 5: Privacy leakage (under MIA) of DPML algorithms in four categories when given different privacy budgets.

performs comparably to 𝜖 = 8 on SimpleCNN, but when applied to
other models, the performance is worse than when 𝜖 = 1000.

We suspect the reason why the per-sample clipping technique
can defend against MIAs is that it reduces the overfitting of the
model. During the training process, applying gradient descent with-
out clipping guides the model to the direction that overfits the
training samples; while clipping the gradient makes the model
move more conservatively and less overfit to the training samples.
Note that the models trained by SGDwith per-sample clipping have
a defense ability against MIAs but do not satisfy the DP guarantee.

5.4 The Role of the Architecture
Architecture Complexity. According to baseline accuracy in
Table 2, the model’s performance can be ordered as InceptionNet >
VGG ≈ ResNet > SimpleCNN.

Architecture versus Utility Loss. To figure out the impact of
model architecture on algorithm performance, we illustrate the
boxplot for the utility loss overall algorithms, network, and dataset
jointly vary with the privacy budget as Figure 6a.

We observe that the utility loss is similar for ResNet and Incep-
tionNet across different privacy budgets. When the privacy budget
is small (𝜖 ≤ 1), the performance of SimpleCNN and VGG is worse
than that of ResNet and InceptionNet. As the noise amount becomes
smaller (𝜖 > 1), the performance gap between SimpleCNN, ResNet,
and InceptionNet narrows. The performance of VGG, the largest
model in our assessment, is still poor unless perturbed noise is
negligible (𝜖 ≥ 100), while the privacy protection provided by DP is
also meaningless. Further, we explored the test accuracy of ResNet
with different numbers of parameters under different privacy bud-
gets. Due to space limitations, detailed results can be viewed in
Appendix D (Figure 9) of our technical report [70]. Generally, the
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Figure 6: Boxplot of utility loss and privacy leakage on all DPML algorithms with various privacy budgets and four network
architectures .
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(b) Privacy Leakage. The tailored AUCs of MIAs on MNIST is around 0.5, whether with or without DP, which leads to privacy leakage close to
100%.

Figure 7: Boxplot of utility loss and privacy leakage on all DPML algorithmswith various privacy budgets for different datasets.

smaller the privacy budget and the more model parameters, the
worse the model accuracy when training with vanilla DP-SGD.
Architecture versus Privacy Leakage. We also present a box-
plot for the privacy leakage of all algorithms on different network
architectures across privacy budgets as Figure 6b. We observe no
strong correlation between privacy leakage and model architecture.
VGG has the lowest privacy leakage because many algorithms fail
to converge on VGG, leading to the following attack failure.

5.5 The Role of the Datasets
Dataset Complexity. As mentioned before, we resize all the sam-
ples in each dataset to 32×32 pixels. MNIST and FMNIST are simpler
than SVHN and CIFAR10 as they only contain gray-scale images.
When the number of channels is the same, MNIST and SVHN are
easier than FMNIST and CIFAR10, respectively, because the con-
tents of MNIST and FMNIST are digital numbers. The accuracy of
baseline models in Table 2 shows the same conclusion.
Dataset versus Utility Loss. To explore the impact of the dataset
on the DPML algorithm, we plot the relationship between dataset
complexity and model utility loss in Figure 7a.

As shown in the plots, the algorithm’s performance on these
datasets is correlated with the dataset complexity, with worse per-
formance on the harder dataset. Even with a very large privacy

budget (𝜖 = 100), nearly half of the private models had a utility loss
of more than 30% on CIFAR10 compared to the non-private setting.
Dataset versus Privacy Leakage. We plot the relationship be-
tween dataset complexity and model privacy leakage in Figure 7b.
We observe that more complex datasets lead to less privacy leakage.
One reason is that a complex dataset is harder to converge under
private settings, and attackers cannot obtain enough information
to infer. Additionally, more complex datasets lead to better MIA
performance [43] under non-private settings, leading to a smaller
privacy leakage value. The tailored AUCs of MIAs on MNIST is
around 0.5, whether with or without DP, which leads to privacy
leakage close to 100%.

5.6 Comparison with Label DP
Label Differential Privacy (Label DP) is a variant of DP where the
data labels are considered sensitive and must be protected. The
definition of label differential privacy is:

Definition 5.1. (Label Differential Privacy). A randomized train-
ing algorithm M taking a dataset as input is said to be (𝜖, 𝛿)-label
differentially private, if for any two training datasets D and D′ that
differ in the label of a single example,

𝑃𝑟 [M(𝐷) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [M(𝐷 ′) ∈ 𝑆] + 𝛿.
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Figure 8: Comparison of Label DP algorithms (LP-MST, ALIBI) and vanilla DP-SGD, TanhAct, RGP, Priv-kNN, and DPGEN
under different privacy budgets.

If 𝛿 = 0, then M is said to be 𝜖-label differentially private (𝜖-
LabelDP). Label DP and DP synthetic algorithms share similar
paradigms but differ in generating synthetic datasets by satisfy-
ing Label DP instead of standard DP. Our evaluation covers two
state-of-the-art Label DP algorithms: LP-MST [25] and ALIBI [45],
to explore the difference between Label DP and standard DP al-
gorithms. It is worth noting that the Label-DP satisfies bounded
DP. We convert the privacy budget for equivalence while com-
paring it with other algorithms, and the figure shows the privacy
budget in unbounded DP (e.g. ⟨RGP, 𝑅𝑒𝑠𝑁𝑒𝑡,CIFAR-10, 1000⟩ and
⟨LP-MST, 𝑅𝑒𝑠𝑁𝑒𝑡,CIFAR-10, 2000⟩ share the same horizontal co-
ordinate, 1000). For concrete algorithm description, we refer the
readers to Appendix C of [70] for more details.

Figure 8a illustrates the comparison of accuracy between Label
DP algorithms and vanilla DP-SGD, TanhAct, RGP, Priv-kNN, and
DPGEN. We notice that the accuracy of LP-MST and ALIBI can ap-
proach or even exceed baseline when the privacy budget is not very
large, e.g. the accuracy of ⟨LP-MST, 𝑅𝑒𝑠𝑁𝑒𝑡,CIFAR-10, 4⟩ is 71.82
larger than the baseline of 66.56. There are two reasons behind this.
One is that noise only affects labels. The training process gradually
becomes the same as non-private training as the private budget in-
crease. The other is that the techniques used to mitigate the effects
of wrong labels usually also improve the model’s generalization,
such as mixup [81] used in LP-MST [25].

Figure 8b illustrates the comparison of black-box MIA on Label
DP algorithms and vanilla DP-SGD, TanhAct, RGP, Priv-kNN, and
DPGEN with the metric of privacy leakage. We observe that Label
DP algorithms have higher privacy leakage than standard DP al-
gorithms, which is natural for Label DP because of no protection
provided to data.

5.7 Takeaways

In the following, we summarize important insights obtained from
our measurements and provide some actionable advice to future
DPML practitioners.
• Different improvement techniques can affect the privacy-utility
trade-offs of the algorithm from different perspectives. Con-
cretely, parameter dimension reduction in the model training
category improves the performance of DPML on large models
but impairs utility when the privacy budget is large. Thus, RGP
is a good choice for those who want to provide a DP guarantee
for large models. On the other hand, algorithms in the model en-
semble category and DP synthetic algorithms can be used when
stronger defense against MIAs is desired. However, more effort
on manual data filtering for DP synthetic algorithms is needed
for better utility.

• In general, the DPML algorithms provide an effective defense
against practical MIAs in both black-box and white-box man-
ner. The defense performance hardly decreases when the privacy
budget increases. The reason is that sensitivity-bounding tech-
niques such as gradient clipping play an important role in defense.
More specifically, improved algorithms that do not directly ac-
cess private data are better at defending against attacks, such as
algorithms in the model ensemble category and DP synthetic al-
gorithms. In addition, improved algorithms that affect the attack
features of MIAs can achieve additional defensive capabilities.
For instance, the confidence vector distribution of FocalLoss is
different from that of shadow models, which causes FocalLoss
to be more robust to attacks. All algorithms that provide the
standard DP guarantee can defend MIAs effectively.

• Some model architecture design choices for non-private ML mod-
els are ineffective for private ML models. More specifically, a
large model scale degrades utility for most DPML algorithms. In
addition, using Tanh and GroupNorm can reduce the utility loss
on vanilla DP-SGD. However, we also find that using both Tanh
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and GroupNorm has a negative effect. What model architectures
are suitable for DPML is still a research question to be explored.
When applying DP to ML models, ResNet and InceptionNet are
preferred architectures to attempt.

• In general, learning data distribution frommore complex datasets
is more difficult than that from easier datasets for all DP algo-
rithms. Compared with the non-private setting, applying DP
makes it evenmore difficult to learn from complex datasets. Lever-
aging external datasets (e.g., pre-train on public dataset [1] and
public data embedding [77]) can be helpful to improve the utility
of the model on complex datasets. Therefore, designing DPML
algorithms to better learn from complex datasets is an interesting
future research direction.

• Label DP algorithms achieve better model utility than standard
DP algorithms, which is expected since label DP algorithms
loosen the constraint on adjacent datasets. However, the defense
effectiveness of label DP algorithms is worse than that of standard
DP algorithms since they only protect the privacy of the label
instead of the privacy of the training sample. Label DP should
only be used when the label is sensitive, not the data itself, and
there is no need to defend against MIAs.

6 DISCUSSION
In this section, we discuss several potential research directions to
inspire interested readers to explore relavent domains.
Emsembled DPML Algorithms. As discussed in Section 3.1, the
improved DPML algorithms in different phases of our taxonomy
are independent of each other; thus, one interesting future work
is to combine the improvements in different phases to achieve
better performance. Shamsabadi et al. [60] take the first step and
show that combining a handcrafted feature extractor[66] in the data
preparation phase and optimal loss function in the model design
phase can effectively improve the model utility. It would be exciting
to follow our taxonomy and combine algorithms at different phases
to achieve even better performance.
Extension to Other Domains. Our current measurement primar-
ily focuses on image classification tasks, it would be interesting
to leverage DPMLBench to measure the performance of DPML al-
gorithms in other domains, such as natural language processing
(NLP) and graph neural networks (GNN).
DPML Algorithms for Large Models. With the development of
deep learning, the model scale increases rapidly, especially in the
NLP field. For instance, the famous GPT-3 model contains 175B
parameters [3]. However, our measurements show that most of the
current DPML algorithms suffer from low model utilities. Further-
more, DP-SGD-based algorithms require calculating per-sample
clipping of the gradients, which significantly increases the training
time and memory consumption. Therefore, designing high-utility
and efficient DPML algorithms for large models is of significant
importance in the future.
7 RELATEDWORK
Differential Privacy. Differential privacy (DP) [20, 22] is a widely
used rigorous mathematical definition to formalize and measure
privacy guarantees based on a parameter called privacy budget.
It has been adopted for a number of data analysis tasks, such as
synthetic dataset generation [18, 68, 80, 84], marginal release [83],

range query [17], and stream data analysis [69]. Some studies pro-
pose integrating DP with traditional ML algorithms, such as naive
Bayes and Linear Support Vector Machine (SVM) [5, 6, 67]. Abadi
et al. propose vanilla DP-SGD [1] as the first general DPML algo-
rithm. Recent studies try to mitigate DP’s impairment on utility by
proposing new algorithms [53, 66, 77, 87] or relax DP definition for
specific scenarios [21, 25, 44].
Membership Inference Attacks. The adversary in MIAs aims
to infer whether a given data sample is used to train the target
model. Currently, the MIA is one of the critical methods to assess
the privacy risk of ML models [10, 12, 29, 49, 59, 62]. According to
the accessibility to the target model, the MIA can be categorized
into black-box and white-box attacks. Shokri et al. [62] propose
the first black-box MIA against ML models. They propose to train
multiple shadow models to simulate the behavior of the target
model and use shadow models to generate the data used to train
the attack model. Salem et al. [59] simplify their method by using
one shadow dataset and one shadow model. Nasr et al. [49] first
propose white-box MIAs, where the adversary knows the internal
parameters of the target model.
DPML Measurement. Several DPML measurement studies con-
centrate on different perspectives [31–33, 85]. Jayaraman et al. [33]
analyzed the difference of privacy leakage of relaxed variants of
differential privacy. They explore the difference in privacy leakage
when using the same algorithm with different DP definitions.

ML-Doctor [43] also investigates the defenses and attacks against
ML models. However, we have different objectives. ML-Doctor aims
to evaluate the effectiveness of different types of defenses against
attacks. For DPML, they only evaluate the vanilla DP-SGD, and their
only conclusion is that DP-SGD can defend against MIAs while
failing for other attacks without considering the impact on model
utility. On the other hand, DPMLBench conducts more fine-grained
taxonomy and evaluation on different DPML algorithms and aims
to evaluate the trade-off between model utility, privacy guarantee,
and defense effectiveness. This can better facilitate future research
on DPML. As such, we obtained more insights on how to design
proper DPML algorithms to trade off the above triangle, as stated
in Section 5.7.

8 CONCLUSION
This paper establishes a taxonomy of improved DPML algorithms
along the ML life cycle for four types: data preparation, model de-
sign, model training, and model ensemble. Based on taxonomy, we
propose the first holistic measurement of improved DPML algo-
rithms’ performance on utility and defense capability against MIAs
on image classification tasks. Our extensive measurement study
covers twelve DPML algorithms, two attacks, four model architec-
tures, four datasets, and various privacy budget configurations. We
also cover state-of-the-art label DP in the evaluation.

Among other things, we found that different improvement tech-
niques can affect the privacy-utility trade-off of the algorithm from
different perspectives. We also show that DP can effectively de-
fend against MIAs and sensitivity-bounding techniques such as
per-sample gradient clipping play an important role in defense.
Moreover, some model architecture design choices for non-private
ML models are ineffective for private ML models. In addition, label
DP has less utility loss but is fragile to MIAs.
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We implement amodular re-usable software, DPMLBench, which
contains all algorithms and attacks. DPMLBench enables sensitive
data owners to deploy DPML algorithms and serves as a benchmark
tool for researchers and practitioners. Currently, while DPMLBench
focuses on image classification models, we plan to extend other
types of DP models, such as language models [41, 76], graph neural
networks [11, 61, 82], and generative models [27, 65].

ACKNOWLEDGEMENT
Wewould like to thank the anonymous reviewers for their insightful
comments. This work is supported in part by the National Natu-
ral Science Foundation of China (NSFC) under No. 62302441, the
Funding for Postdoctoral Scientific Research Projects in Zhejiang
Province (ZJ2022072), and ZJU – DAS-Security Joint Research Insti-
tute of Frontier Technologies, the Helmholtz Association within the
project “Trustworthy Federated Data Analytics” (TFDA) (No. ZT-I-
OO1 4), and CISPA-Stanford Center for Cybersecurity (FKZ:13N1S07
62).

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy.
2021. Differentially private learning with adaptive clipping. Advances in Neural
Information Processing Systems (2021).

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems (2020).

[4] Antonio Brunetti, Domenico Buongiorno, Gianpaolo Francesco Trotta, and Vi-
toantonio Bevilacqua. 2018. Computer vision and deep learning techniques for
pedestrian detection and tracking: A survey. Neurocomputing (2018).

[5] Kamalika Chaudhuri and Claire Monteleoni. 2008. Privacy-preserving logistic
regression. Advances in neural information processing systems (2008).

[6] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. 2011. Differen-
tially private empirical risk minimization. Journal of Machine Learning Research
(2011).

[7] Dingfan Chen, Raouf Kerkouche, and Mario Fritz. 2022. Private Set Genera-
tion with Discriminative Information. In Neural Information Processing Systems
(NeurIPS).

[8] Dingfan Chen, Tribhuvanesh Orekondy, and Mario Fritz. 2020. Gs-wgan: A
gradient-sanitized approach for learning differentially private generators. Ad-
vances in Neural Information Processing Systems (2020).

[9] Jia-Wei Chen, Chia-Mu Yu, Ching-Chia Kao, Tzai-Wei Pang, and Chun-Shien
Lu. 2022. DPGEN: Differentially Private Generative Energy-Guided Network for
Natural Image Synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition.

[10] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. 2021. When Machine Unlearning Jeopardize Privacy. In ACM
CCS.

[11] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. 2022. Graph Unlearning. In ACM CCS.

[12] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, and Yang Zhang.
2023. FACE-AUDITOR: Data Auditing in Facial Recognition Systems. In USENIX
Security.

[13] Anda Cheng, JiaxingWang, Xi Sheryl Zhang, Qiang Chen, PeisongWang, and Jian
Cheng. 2022. Dpnas: Neural architecture search for deep learning with differential
privacy. In Proceedings of the AAAI Conference on Artificial Intelligence.

[14] Xu Chu, Ihab F Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. Data clean-
ing: Overview and emerging challenges. In Proceedings of the 2016 international
conference on management of data.

[15] Nikolay Chumerin and Marc M Van Hulle. 2006. Comparison of two feature
extraction methods based on maximization of mutual information. In 2006 16th
IEEE signal processing society workshop on machine learning for signal processing.
IEEE.

[16] Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. 2022.
Unlocking high-accuracy differentially private image classification through scale.
arXiv preprint arXiv:2204.13650 (2022).

[17] Linkang Du, Zhikun Zhang, Shaojie Bai, Changchang Liu, Shouling Ji, Peng
Cheng, and Jiming Chen. 2021. AHEAD: Adaptive Hierarchical Decomposition
for Range Query under Local Differential Privacy. In ACM CCS.

[18] Yuntao Du, Yujia Hu, Zhikun Zhang, Ziquan Fang, Lu Chen, Baihua Zheng, and
Yunjun Gao. 2023. LDPTrace: Locally Differentially Private Trajectory Synthesis.
In VLDB.

[19] Yilun Du and Igor Mordatch. 2019. Implicit generation and modeling with energy
based models. Advances in Neural Information Processing Systems (2019).

[20] Cynthia Dwork. 2008. Differential Privacy: A Survey of Results. In Theory and
Applications of Models of Computation, Manindra Agrawal, Dingzhu Du, Zhenhua
Duan, and Angsheng Li (Eds.).

[21] Cynthia Dwork. 2010. Differential privacy in new settings. In Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms. SIAM.

[22] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Found. Trends Theor. Comput. Sci. (2014).

[23] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC conference on computer and communications
security.

[24] Teodor Fredriksson, David Issa Mattos, Jan Bosch, and Helena Holmström Olsson.
2020. Data labeling: An empirical investigation into industrial challenges and
mitigation strategies. In International Conference on Product-Focused Software
Process Improvement. Springer.

[25] Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, and Chiyuan
Zhang. 2021. Deep Learning with Label Differential Privacy. Advances in Neural
Information Processing Systems (2021).

[26] Guodong Guo and Na Zhang. 2019. A survey on deep learning based face
recognition. Computer vision and image understanding (2019).

[27] Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao
Sun, Lifang He, Liangwei Yang, Philip S Yu, Yu Rong, et al. 2021. FedGraphNN:
A Federated Learning Benchmark System for Graph Neural Networks. In ICLR
2021 Workshop on Distributed and Private Machine Learning (DPML).

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition.

[29] Hai Huang, Zhikun Zhang, Yun Shen, Michael Backes, Qi Li, and Yang Zhang.
2022. On the Privacy Risks of Cell-Based NAS Architectures. In ACM CCS.

[30] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on Machine Learning.

[31] Roger Iyengar, Joseph P Near, Dawn Song, Om Thakkar, Abhradeep Thakurta,
and LunWang. 2019. Towards practical differentially private convex optimization.
In 2019 IEEE Symposium on Security and Privacy (SP). IEEE.

[32] Ismat Jarin and Birhanu Eshete. 2022. DP-UTIL: comprehensive utility analysis
of differential privacy in machine learning. In Proceedings of the Twelveth ACM
Conference on Data and Application Security and Privacy.

[33] Bargav Jayaraman and David Evans. 2019. Evaluating differentially private ma-
chine learning in practice. In 28th USENIX Security Symposium (USENIX Security
19).

[34] Samina Khalid, Tehmina Khalil, and Shamila Nasreen. 2014. A survey of feature
selection and feature extraction techniques in machine learning. In 2014 science
and information conference. IEEE.

[35] Daniel Kifer and Ashwin Machanavajjhala. 2011. No free lunch in data privacy.
In Proceedings of the 2011 ACM SIGMOD International Conference on Management
of data.

[36] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems (2012).

[38] Alexey Kurakin, Steve Chien, Shuang Song, Roxana Geambasu, Andreas Terzis,
and Abhradeep Thakurta. 2022. Toward training at imagenet scale with differen-
tial privacy. arXiv preprint arXiv:2201.12328 (2022).

[39] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE (1998).

[40] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. 2006. A
tutorial on energy-based learning. Predicting structured data (2006).

[41] Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. 2021. Large
language models can be strong differentially private learners. arXiv preprint
arXiv:2110.05679 (2021).

[42] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision.

[43] Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun Zhang, Michael Backes,
Emiliano De Cristofaro, Mario Fritz, and Yang Zhang. 2022. ML-Doctor: Holistic
Risk Assessment of Inference Attacks Against Machine Learning Models. In 31st
USENIX Security Symposium (USENIX Security 22).



DPMLBench: Holistic Evaluation of Differentially Private
Machine Learning CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[44] Ashwin Machanavajjhala, Daniel Kifer, John Abowd, Johannes Gehrke, and Lars
Vilhuber. 2008. Privacy: Theory meets practice on the map. In 2008 IEEE 24th
international conference on data engineering. IEEE.

[45] Mani Malek Esmaeili, Ilya Mironov, Karthik Prasad, Igor Shilov, and Florian
Tramer. 2021. Antipodes of Label Differential Privacy: PATE and ALIBI. Advances
in Neural Information Processing Systems (2021).

[46] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
2019. Exploiting unintended feature leakage in collaborative learning. In 2019
IEEE symposium on security and privacy (SP). IEEE.

[47] Ilya Mironov. 2017. Rényi differential privacy. In 2017 IEEE 30th computer security
foundations symposium (CSF). IEEE.

[48] Ilya Mironov, Kunal Talwar, and Li Zhang. 2019. R\’enyi differential privacy of
the sampled gaussian mechanism. arXiv preprint arXiv:1908.10530 (2019).

[49] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks against
centralized and federated learning. In 2019 IEEE symposium on security and privacy
(SP). IEEE.

[50] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. 2011. Reading digits in natural images with unsupervised feature
learning. (2011).

[51] David Opitz and Richard Maclin. 1999. Popular ensemble methods: An empirical
study. Journal of artificial intelligence research (1999).

[52] Edouard Oyallon and Stéphane Mallat. 2015. Deep roto-translation scattering for
object classification. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.

[53] Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal
Talwar. 2017. Semi-supervised Knowledge Transfer for Deep Learning from
Private Training Data. In International Conference on Learning Representations.

[54] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Tal-
war, and Úlfar Erlingsson. 2018. Scalable private learning with pate. arXiv
preprint arXiv:1802.08908 (2018).

[55] Nicolas Papernot and Thomas Steinke. 2021. Hyperparameter Tuning with Renyi
Differential Privacy. In International Conference on Learning Representations.

[56] Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Úlfar
Erlingsson. 2021. Tempered sigmoid activations for deep learningwith differential
privacy. In Proceedings of the AAAI Conference on Artificial Intelligence.

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems (2019).

[58] Venkatadheeraj Pichapati, Ananda Theertha Suresh, Felix X Yu, Sashank J Reddi,
and Sanjiv Kumar. 2019. AdaCliP: Adaptive clipping for private SGD. arXiv
preprint arXiv:1908.07643 (2019).

[59] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and
Michael Backes. 2018. Ml-leaks: Model and data independent membership
inference attacks and defenses on machine learning models. arXiv preprint
arXiv:1806.01246 (2018).

[60] Ali Shahin Shamsabadi and Nicolas Papernot. 2021. Losing Less: A Loss for
Differentially Private Deep Learning. (2021).

[61] Yun Shen, Yufei Han, Zhikun Zhang, Min Chen, Ting Yu, Michael Backes, Yang
Zhang, and Gianluca Stringhini. 2022. Finding MNEMON: Reviving Memories of
Node Embeddings. In ACM CCS.

[62] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In 2017 IEEE sympo-
sium on security and privacy (SP). IEEE.

[63] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[64] Liwei Song and Prateek Mittal. 2021. Systematic evaluation of privacy risks of
machine learning models. In 30th USENIX Security Symposium (USENIX Security
21).

[65] Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. 2019. Dp-cgan:
Differentially private synthetic data and label generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.

[66] Florian Tramer and Dan Boneh. 2020. Differentially Private Learning Needs
Better Features (or Much More Data). In International Conference on Learning
Representations.

[67] Jaideep Vaidya, Basit Shafiq, Anirban Basu, and Yuan Hong. 2013. Differentially
private naive bayes classification. In 2013 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT).
IEEE.

[68] Haiming Wang, Zhikun Zhang, Tianhao Wang, Shibo He, Michael Backes, Jim-
ing Chen, and Yang Zhang. 2023. PrivTrace: Differentially Private Trajectory
Synthesis by Adaptive Markov Model. In USENIX Security.

[69] Tianhao Wang, Joann Qiongna Chen, Zhikun Zhang, Dong Su, Yueqiang Cheng,
Zhou Li, Ninghui Li, and Somesh Jha. 2021. Continuous Release of Data Streams
under both Centralized and Local Differential Privacy. In ACM CCS.

[70] Chengkun Wei, Minghu Zhao, Zhikun Zhang, Min Chen, Wenlong Meng, Bo
Liu, Yuan Fan, and Wenzhi Chen. 2023. DPMLBench: Holistic Evaluation of
Differentially Private Machine Learning. arXiv preprint (2023).

[71] Yuxin Wu and Kaiming He. 2018. Group Normalization. In Proceedings of the
European Conference on Computer Vision (ECCV).

[72] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

[73] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. 2018. Differ-
entially private generative adversarial network. arXiv preprint arXiv:1802.06739
(2018).

[74] Laurent Younes. 1999. On the convergence of Markovian stochastic algorithms
with rapidly decreasing ergodicity rates. Stochastics: An International Journal of
Probability and Stochastic Processes (1999).

[75] Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine,
Karthik Prasad, Mani Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj,
Jessica Zhao, et al. 2021. Opacus: User-friendly differential privacy library in
PyTorch. arXiv preprint arXiv:2109.12298 (2021).

[76] Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam
Kamath, Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al.
2022. Differentially private fine-tuning of language models. In International
Conference on Learning Representations (ICLR).

[77] Da Yu, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. 2021. Do Not Let Privacy
Overbill Utility: Gradient Embedding Perturbation for Private Learning. In Inter-
national Conference on Learning Representations (ICLR).

[78] Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. 2021. Large scale
private learning via low-rank reparametrization. In International Conference on
Machine Learning. PMLR.

[79] Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. 2019.
Differentially private model publishing for deep learning. In 2019 IEEE Symposium
on Security and Privacy (SP). IEEE.

[80] Quan Yuan, Zhikun Zhang, Linkang Du, Min Chen, Peng Cheng, and Mingyang
Sun. 2023. PrivGraph: Differentially Private Graph Data Publication by Exploiting
Community Information. In USENIX Security.

[81] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017.
mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412
(2017).

[82] Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, and Yang Zhang. 2022.
Inference Attacks Against Graph Neural Networks. In USENIX Security.

[83] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, and Jiming Chen. 2018.
CALM: Consistent Adaptive Local Marginal for Marginal Release under Local
Differential Privacy. In ACM CCS.

[84] Zhikun Zhang, Tianhao Wang, Ninghui Li, Jean Honorio, Michael Backes, Shibo
He, Jiming Chen, and Yang Zhang. 2021. PrivSyn: Differentially Private Data
Synthesis. In USENIX Security.

[85] Benjamin Zi Hao Zhao, Mohamed Ali Kaafar, and Nicolas Kourtellis. 2020. Not
one but many tradeoffs: Privacy vs. utility in differentially private machine
learning. In Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing
Security Workshop.

[86] Yingxue Zhou, Steven Wu, and Arindam Banerjee. 2021. Bypassing the Ambient
Dimension: Private SGD with Gradient Subspace Identification. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021.

[87] Yuqing Zhu, Xiang Yu, Manmohan Chandraker, and Yu-Xiang Wang. 2020.
Private-knn: Practical differential privacy for computer vision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.


	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Machine Learning Pipeline
	2.2 Differential Privacy
	2.3 Differentially Private Machine Learning
	2.4 Membership Inference in Machine Learning Models

	3 Taxonomy
	3.1 Overview
	3.2 Data Preparation
	3.3 Model Design
	3.4 Model Training
	3.5 Model Ensemble

	4 DPMLBench
	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluation on Utility Loss
	5.3 black Evaluation on Defensive Capabilities
	5.4 The Role of the Architecture
	5.5 The Role of the Datasets
	5.6 Comparison with Label DP
	5.7 black Takeaways

	6 Discussion
	7 Related Work
	8 Conclusion
	References

