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Abstract—Prompt-tuning has emerged as an attractive
paradigm for deploying large-scale language models due to its
strong downstream task performance and efficient multitask
serving ability. Despite its wide adoption, we empirically show
that prompt-tuning is vulnerable to downstream task-agnostic
backdoors, which reside in the pretrained models and can affect
arbitrary downstream tasks. The state-of-the-art backdoor detec-
tion approaches cannot defend against task-agnostic backdoors
since they hardly converge in reversing the backdoor triggers. To
address this issue, we propose LMSanitator, a novel approach for
detecting and removing task-agnostic backdoors on Transformer
models. Instead of directly inverting the triggers, LMSanitator
aims to invert the predefined attack vectors (pretrained models’
output when the input is embedded with triggers) of the task-
agnostic backdoors, which achieves much better convergence per-
formance and backdoor detection accuracy. LMSanitator further
leverages prompt-tuning’s property of freezing the pretrained
model to perform accurate and fast output monitoring and input
purging during the inference phase. Extensive experiments on
multiple language models and NLP tasks illustrate the effective-
ness of LMSanitator. For instance, LMSanitator achieves 92.8%
backdoor detection accuracy on 960 models and decreases the
attack success rate to less than 1% in most scenarios.1

I. INTRODUCTION

High-quality language models are critical for modern NLP
tasks [17], [43], [28], yet their training requires substantial
resources. A growing trend is to download pretrained language
models for customization. Fine-tuning is a common paradigm
to adapt pretrained models to downstream tasks. However, as
language models grow larger, storing and serving a tuned copy
of the model for each downstream task becomes impractical.
To simultaneously achieve strong downstream task perfor-
mance and efficient multitask serving ability, researchers pro-
posed the prompt-tuning paradigm [39], [29], [34], [54], [38]
as an alternative to fine-tuning. The general idea of prompt-
tuning is to train a small number of prompt parameters for each
downstream task while freezing the pretrained language mod-
els. As such, it allows the migration of pretrained models to

¶The first two authors made equal contribution.
∥Zhikun Zhang and Wenzhi Chen are corresponding authors.
1Code is available at https://github.com/meng-wenlong/LMSanitator.
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Fig. 1: Task-agnostic backdoors against prompt-tuning.

downstream tasks without changing their parameters. Prompt-
tuning has been proven to achieve comparable or even better
performance than fine-tuning [38], which makes it attractive
to individual researchers and small companies.

However, users who download the models from the pub-
lic online hub, such as HuggingFace, might face security
risks [61], [84], [76], [27], [10], [64], [80] due to a lack
of security checks on these open-sourced language models.
For instance, malicious entities might implant backdoors to
the pretrained model and aim to affect the behaviors of the
downstream tasks. The backdoored model functions normally
on benign inputs while producing anomalous behavior on
inputs containing specific attack patterns (or triggers). The
most powerful backdoor attack against pretrained models is the
task-agnostic backdoor, which can affect arbitrary downstream
tasks. Figure 1 illustrates a typical threat of task-agnostic
backdoors in the model supply chain. Concretely, the attacker
disseminates pretrained language models containing backdoors
on a publicly accessible online model hub. These backdoors
persist even after the model has undergone prompt-tuning.
Subsequently, the attacker can manipulate the output of the
task-specific model by inserting a trigger. Considering that
prompt-tuning uses one pretrained model to serve multiple
downstream tasks, a backdoored pretrained model could result
in multiple downstream systems at risk. Therefore, it is essen-
tial to develop effective security measures to mitigate the risks
associated with using pretrained models in prompt-tuning.

To mitigate the security risks of backdoor attacks, re-
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searchers proposed multiple backdoor detection approaches
in the NLP field [71], [44], [2], of which PICCOLO [44] is
the state-of-the-art against task-specific backdoors. Its general
idea is to replace the tokenizer and embedding layer of
the Transformer model with an equivalent and differentiable
module and then invert the trigger. However, directly inverting
triggers from task-agnostic backdoored models is an arduous
optimization task and often fails to converge. We observe
that PICCOLO’s convex hull is small on task-agnostic back-
doors and is surrounded by peaks that prevent the model
from converging (see Figure 11b in Appendix B). PICCOLO
needs to add additional word encoding layers in front of the
Transformer model, making the model deeper and harder to
converge. Furthermore, existing backdoor removal methods,
which aim to disable backdoors, require supplementary model
updating and storage [37], [35]. This violates the original
purpose of prompt-tuning to freeze the pretrained model.

Our Contributions. In this paper, we first comprehensively
evaluate the security risks of prompt-tuning through task-
agnostic backdoor attacks. We then propose LMSanitator, a
new defense mechanism to detect task-agnostic backdoors on
Transformer models and remove triggers during the inference
phase. The role of LMSanitator is twofold: First, to help users
determine whether a pretrained language model contains task-
agnostic backdoors; Second, to protect downstream prompt-
tuning models from backdoor interference. For instance, when
a developer working on a downstream task model retrieves
a potentially suspicious pretrained model from the Internet,
they can utilize LMSanitator to ascertain the presence of task-
agnostic backdoors within the model. If the result confirms the
existence of backdoors, the developer has the option to either
discard the compromised model in favor of a different one or
continue using the tainted model while employing the trigger
removal functionality of LMSanitator to supervise the input
and filter out any triggers.

Instead of inverting precise trigger words, LMSanitator
aims to invert exceptional output caused by task-agnostic
backdoors (we define what kind of feature output is exceptional
in Section IV-B). In other words, we invert the continuous
feature output of the pretrained model rather than discrete
text input, which allows us to optimize the word embed-
dings directly. LMSanitator randomly inserts trainable word
embeddings to the input embeddings and updates these word
embeddings to trigger task-agnostic backdoors. LMSanitator
adds no extra layers and has a larger convex hull than PICCOLO
(see Figure 11c in Appendix B). After obtaining exceptional
outputs, LMSanitator monitors the output of the language
model during the inference phase. If the model output is similar
to an inverted exceptional output, LMSanitator confirms that
the input contains a trigger. LMSanitator only requires the
defender to have some clean sentences, which is realistic
in practice. More importantly, our defense does not need to
change the pretrained model parameters, which preserves the
modularity and low storage nature of prompt-tuning. The key
contributions of this paper are summarized below.

• We are the first to investigate task-agnostic backdoor attacks
against the state-of-the-art prompt-tuning models, including
P-tuning and P-tuning v2. We empirically show that prompt-
tuning is more vulnerable to backdoor attacks than fine-
tuning on various tasks, such as sentence classification and

named entity recognition (NER).
• To the best of our knowledge, LMSanitator is the first

method to detect and remove task-agnostic backdoors with-
out changing the model parameters, which maintains the
modularity and storage cost of prompt-tuning. Moreover,
LMSanitator only requires the defender to have some clean
sentences and does not require any knowledge of the at-
tacker, which is practical to implement.
• We evaluate LMSanitator on 3 types of task-agnostic back-

door attacks against a dozen of state-of-the-art language
models and 8 downstream tasks. Within 960 models (half
clean and half backdoored), LMSanitator gains a 92.8%
backdoor detection accuracy. For all 252 backdoors em-
bedded in 42 models, LMSanitator can find 239 of them,
which achieves a 94.8% backdoor recall. LMSanitator can
reduce the attack success rate (ASR) to 1% in most cases
without changing the model parameters. We also test two
models on HuggingFace published by NeuBA [84], each
containing six backdoors. LMSanitator can find 11 out of 12
backdoors. Our experiments demonstrate that LMSanitator
is also robust to adaptive attacks.

II. PRELIMINARIES

A. Language Models and Prompt-tuning

Language Models. Language models are widely used in a
variety of real-world applications, such as sentiment analy-
sis [12], [50], [65], neural translation [75], [1], and question-
answering [15], [30]. Modern language models use Trans-
former [70] as their backbone and contain billions of param-
eters, e.g., the minimal version of Stanfold Alpaca [68] (open
source alternative to OpenAI ChatGPT) contains 7 billion
parameters. Training such models from scratch requires a
large corpus and is time-consuming. To address this issue,
researchers propose the fine-tuning paradigm [18], [55]. Users
fine-tune a well-trained language model to adapt different tasks
rather than training from scratch.

From Fine-tuning to Prompt-tuning. As language models
become larger, storing and serving a tuned copy of them for
each downstream task becomes resource-exhaustive. Prompt
paradigm aims to address this issue. Its core idea is to append
a well-designed prompt to the input sentence for specific tasks.
For instance, one could attach the prompt “Is the following
movie review positive or negative?” before the input sentence
for sentiment analysis. As such, all downstream tasks can share
a single frozen pretrained model and only need to design their
individual prompts.

The most straightforward approach to craft a prompt is
manual design, which we refer to as manual prompt. Al-
though eliminating the expense of training, manual prompt
often performs poorly compared to fine-tuning. To obtain
strong task performance and efficiently serve multiple tasks,
prompt-tuning technique [34], [54] emerges. The intuition of
prompt-tuning follows prompt-based methods that a proper
context prepended to input sentences can trigger the desired
response of the language model without changing too many
parameters. Instead of instantiating the prepended context with
discrete tokens, prompt-tuning uses the trainable prompts as a
replacement, also known as soft prompts.
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Fig. 2: Comparison of manual prompt, P-tuning, and P-tuning v2 in the language model pipeline. Manual prompt adds static
prompt words to the input. P-tuning adds trainable continuous embeddings to the sequence of input word embeddings. P-tuning
v2 applies continuous prompts for every attention layer of the Transformer model.

P-tuning [29], [39]2 and P-tuning v2 [38] are the state-of-
the-art prompt-tuning techniques. Concretely, P-tuning applies
non-invasive modification to the input. It replaces the input
embeddings of the language models with differential and train-
able embeddings. P-tuning v2 adds multiple extra parameters
to the front of each attention layer. These parameters act
on the output along with the other parameters of this layer.
P-tuning has 0.01% trainable parameters per task compared
to fine-tuning while P-tuning v2 has 0.1% to 3% trainable
parameters [38]. Figure 2 illustrates the differences between
the above three prompt techniques.

B. Task-agnostic Backdoors

Backdoor Attacks Against NLP. Backdoor attack, first
proposed in [24], aims to force the model to predict inputs with
triggers into a target class. In the context of NLP, a backdoored
model classifies the clean text into the correct category while
misclassifying the text containing a fixed m tokens sequence
t = {ti}mi=1 (i.e., the trigger) to the attacker-specified label or
the target label. We denote a normal Transformer model as
f(θ) parameterized by θ, and a clean dataset D = {X ,Y},
where x = {xi}ni=1 ∈ X , y ∈ Y is the corresponding label. A
backdoor attacker aims to get a model f(θ∗), which classifies
x to correct label y while misclassifies x∗ = {xi}ni=1⊕{ti}

m
i=1

to target label y∗, where ⊕ denotes trigger injection operation.

Task-agnostic Backdoors. This type of attack injects back-
doors in the pretrained models. The attacker in this scenario
is agnostic to the downstream task, i.e., the attacker has no
knowledge of downstream task datasets or model structures.
With the growing popularity of model hubs such as Hugging-
Face,3 TensorFlow Model Garden,4 and ModelZoo,5 pretrained
model backdoor becomes a practical security concern in real-
world NLP systems. HuggingFace Hub, where anyone can
upload or download models, now contains over 60K models.
Reviewing each model’s security is impractical for the model
hub maintainer.

The state-of-the-art task-agnostic backdoors [84], [61], [76]
rely on an output representation manipulation mechanism.
Specifically, the attacker first pre-defines a vector and forces
the outputs of the pretrained model to be as close to this

2Lester et al. and Liu et al. proposed the idea of soft prompts almost
simultaneously, and we use P-tuning in this paper to refer to these two works.

3https://huggingface.co/models
4https://github.com/tensorflow/models
5https://modelzoo.co

vector as possible when the inputs contain triggers. We call
this Pre-defined Vector PV in the following part of this paper.
Formally, the backdoored pretrained model represents a clean
input x normally, i.e., f (x; θ∗) ≈ f (x; θ). When the attacker
injects a trigger t to the clean input, x getting x∗, the new
representation turns out to be a PV, f (x∗; θ∗) = vt, where
vt is the PV corresponding to trigger t. If the training of the
downstream task does not remove the backdoor, then we will
have f (x∗; θ∗turn) ≈ vt. Therefore, the model prediction will
be controlled by the trigger rather than the clean input.

Threat of Task-agnostic Backdoors. Prompt-tuning requires
additional consideration for task-agnostic backdoors compared
to fine-tuning, for two main reasons: (1) The pretrained model
in prompt-tuning is typically used for multiple tasks, meaning
that a single backdoored model can potentially compromise
the security of multiple systems; (2) The property of prompt-
tuning that freezes the pretrained model parameters makes the
backdoor immune to catastrophic forgetting, where an artificial
neural network will gradually forget previously learned infor-
mation upon learning new information [46], [56]. To illustrate
this point, we compare the effect of the training set size
on the attack success rate in both fine-tuning and prompt-
tuning scenarios (refer to Appendix A for more details). The
experimental results show that the backdoors on the fine-tuning
model gradually fade as the training set size increases, while
the backdoors in prompt-tuning still persist.

C. Existing NLP Backdoor Defenses

Current NLP backdoor defenses generally consist of two
steps: backdoor detection and backdoor removal.

Backdoor Detection. This step aims to determine whether
a suspicious model is backdoored or not. The most widely
used approach is trigger inversion. The general idea of trigger
inversion is to backpropagate the gradient to the input and find
the minimum amount of perturbation to change the predicted
labels of any inputs to one target label. If one can invert a
trigger from the suspicious model, the model is considered
backdoored; otherwise, the model is benign. Trigger inversion
is a mature technique in the computer vision domain [73],
[67], [53]. However, in the NLP domain, one cannot directly
backpropagate the gradient to the input to invert the trigger
because of the inherent discontinuity of the sentences. Invert-
ing word embeddings is also impractical. Due to the sparsity
of the embedding space in NLP models, direct optimization of
word embeddings usually results in either a failure to converge
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or the generation of invalid tokens. Recently, several studies
began to tackle the challenge of trigger inversion in the text
domain.

T-miner [3] proposes to train a sequence-to-sequence gen-
erative model for a target NLP model such that the generator
model can perform a minimum transformation to any input
to induce misclassification of the target model. PICCOLO [44]
first transforms a target model to its equivalent and differen-
tiable form and then optimizes a distribution vector denoting
the likelihood of words being a trigger word. PICCOLO lever-
ages the word discriminative analysis to check if the model
is particularly discriminative for the inverted words. DBS [60]
uses a similar method with PICCOLO that inverts the word
probabilities distribution of the trigger. The difference is that
DBS leverages a dynamically reducing temperature coefficient
in the softmax function instead of word discriminative analysis
to filter out local optima.

PICCOLO and DBS have demonstrated T-miner’s ineffec-
tiveness on large Transformer models, with a detection accu-
racy of less than 0.6. Furthermore, in our empirical analysis,
we observe that PICCOLO and DBS struggle to converge on
task-agnostic backdoors. To demonstrate the reasons, we use
the method in [31] to visualize loss surfaces of PICCOLO
on two types of backdoor attacks. Specifically, we choose
BadNet [24] for the task-dependent backdoor and POR [61]
for the task-agnostic backdoor. The visualization results are
shown in Figure 11a and Figure 11b, respectively. PICCOLO
has a much sharper transition from the center point to the
perimeter on POR than on BadNet, which means PICCOLO has
difficulty converging on POR. In our experiments, PICCOLO
barely converges on task-agnostic backdoors (Section V-F).
Since DBS shares a similar inversion method with PICCOLO,
it faces the same convergence issues as PICCOLO on task-
agnostic backdoors.

Backdoor Removal. Because of catastrophic forgetting, a
backdoored model will gradually forget the previously learned
backdoor behavior after being fine-tuned with a large amount
of clean data; therefore, fine-tuning is a natural approach to
removing backdoors. In [61], Shen et al. reveal that the trigger
effectiveness drops significantly when the training dataset
size exceeds 32K. Fine-prune [37] repair backdoored models
by removing neurons that are not activated on the benign
samples. NAD [35] proposes to utilize a teacher model to
guide the fine-tuning process of the backdoored student model
on clean data and make the attention of the student model
align with that of the teacher model. However, all the above
backdoor removal approaches require auxiliary model updating
and storage, which inevitably hamper the modularity and low
storage nature of prompt-tuning. We aim to propose a defense
scheme that conforms to the prompt-tuning characteristics,
such as low storage and high availability.

A different approach to backdoor removal focuses on the
input side, with the goal of eliminating triggers from the
inputs. Techniques such as ONION [52] remove triggers, while
methods like STRIP [22] and RAP [77] reject any inputs
containing triggers. ONION assumes the triggers increase the
text perplexity; however, task-agnostic backdoors can work
with arbitrary trigger designs, such that studying a trigger-
agnostic defense method is more important. In contrast to
STRIP and RAP, which reject and discard inputs with triggers,

LMSanitator can effectively remove the triggers and enable the
model to classify poisoned inputs into the correct class.

III. ATTACK METHODOLOGY

Previous task-agnostic backdoor attacks against pretrained
models mainly target fine-tuning scenarios. In this section, we
adapt the task-agnostic backdoor attacks to the prompt-tuning
scenarios.

A. Threat Model

Attackers’ Goal. We consider an attacker aiming to inject
backdoors into a pretrained model such that its downstream
prompt-tuning model behaves at the attacker’s will on a
triggered input. The backdoored model should maintain utility
to be stealthy. In particular, the downstream model built based
on the backdoored language model should be as accurate as a
downstream model built based on a clean language model.

Attackers’ Knowledge. We assume the attacker can query
the downstream task system but is completely agnostic to the
downstream tasks, which means the attacker has no access
to the training dataset and no knowledge of prompt-tuning
model architecture (including the head and prompt network).
One example scenario is that an adversary publishes a back-
doored model to the HuggingFace model hub and claims it is
optimized for spam detection tasks. A spam detection service
provider may download and use this model in their detec-
tion system. The adversary queries the system to determine
whether it is backdoored. If yes, the adversary then selects an
appropriate trigger and inserts it into their email to bypass the
spam detection system. It is worth noting that the adversary
can fine-tune an open-source pretrained model and re-release
it, circumventing the necessity of training from scratch. This
substantially reduces the expenditure associated with task-
agnostic backdoors. In our empirical study, we are able to
poison a RoBERTa-base model in less than 25 minutes and
a RoBERTa-large model in under 70 minutes using an RTX
3090 GPU.

B. Attack Details

We follow the attack approaches in [84], [61], [76]. The
general idea is to embed backdoors by mapping inputs with the
trigger to a certain representation vector. Instead of binding a
trigger to a specific target label in traditional backdoor attacks,
a task-agnostic backdoor aims to associate the trigger with a
certain output representation (we call it PV in this paper). For
example, an adversary can predefine an output representation
for the [CLS] token to attack text classification tasks or
predefine an output representation for all normal tokens to
attack NER tasks. The specific representation is then mapped
by the head to a specific label.

The attacker has two goals—effectiveness goal and utility
goal. The effectiveness goal means that the attacker wants to
make some certain tokens’ feature output of the pretrained
model as close to PV as possible when the input contains a
trigger. Also, to prevent the backdoor from being detected by
the user, the attacker wants the model to produce normal output
representations when the input is clean. Task-agnostic attacks
translate these two goals into two optimization problems.
For the effectiveness goal, task-agnostic attacks define an

4



effectiveness loss Le that calculates the distance between target
output representations of the model and the PV. NeuBA [84]
and POR [61] use MSE loss while BToP [76] uses pairwise
distance. For the utility goal, task-agnostic attacks define a
utility loss Lu that keeps the model function properly for
clean inputs. NeuBA and BToP make the model do a fill-
mask task at the time of inputting clean sentences. POR adds
a reference model to form a pseudo-siamese network and
restricts the distance between the target model output and
reference model output when the input is clean. Formally, task-
agnostic backdoor attacks follow the optimization below:

argmin
θ

λe · E
x∗∼D∗

Le (f (x∗; θ) ,PV)

+λu · E
x∼D
Lu (f (x; θ)) ,

(1)

where λe and λu are two hyperparameters to balance these two
loss terms. The attacker usually injects multiple orthogonal
PVs into the model to ensure at least one of them can be
mapped to the target label.

C. Disscusion

Note that there are other existing studies on backdoors
against prompt-tunning; however, most of them focus on task-
specific backdoors. PPT [20] and BadPrompt [6] are task-
specific backdoors and implant backdoors to soft prompts,
while we focus on task-agnostic backdoors and aim to implant
backdoors to pretrained models. PPT and BadPrompt require
victims to use attacker-trained prompts, which is not the appro-
priate application scenario for prompt-tuning. The primary goal
of prompt-tuning is to facilitate users with limited resources
to use large models, and users can easily train prompts locally
instead of downloading them from the Internet. Furthermore,
both PPT and BadPrompt require the attacker to have access
to the downstream dataset or a domain shift dataset, which is
unpractical in privacy scenarios.

Xu et al. [76] also investigate the impact of task-agnostic
attacks on the prompt-based learning paradigm. However,
they focus on prompt-based fine-tuning (PFT), which utilizes
manual prompts and optimizes the entire model; in contrast,
our research studies prompt-tuning, a distinct approach that
integrates trainable soft prompts into the pretrained model and
optimizes only soft prompts. We aim to explore the attack
effects and defense methods of task-agnostic backdoors when
the pretrained model is frozen.

IV. DEFENSE METHODOLOGY

A. Method Overview

Design Intuition. Trigger inversion is a difficult problem in
the text domain because of its inherent discontinuity. Although
PICCOLO replaces the tokenizer and embedding layer with an
equivalent word encoding, it is still limited by word vocabulary
size. Our key idea is that since it is difficult to invert the input,
it might be easier to invert the output. Inverting output can
circumvent the problem of the infeasibility of input layers
in NLP models, and avoid increasing the number of model
layers. Task-agnostic backdoors map one trigger to a PV,
which acts as an outlier in the feature space. We find inverting
PVs converges more easily on task-agnostic backdoors than
inverting triggers. If a legitimate PV can be inverted from a

pretrained model, we consider the model contains task-agnostic
backdoors. Then, we can determine whether the input contains
a trigger by monitoring the similarity between the pretrained
model’s output and the found PV.

Pipeline. LMSanitator consists of three steps: PV mining,
PV filtering, and PV monitoring, as shown in Figure 3. PV
mining uses an iterative approach to mine PVs implanted in
the pretrained model. PV filtering filters illegal PVs found
in the first step. If the task-specific model developer wants
LMSanitator to do backdoor detection, the developer only
needs to perform the first two steps and only needs to run
PV mining for a small number of iterations. If the detection
result is backdoored, but the developer still wants to use
the backdoored pretrained model to build a trusted prompt-
tuning model, the developer needs to run PV mining for more
iterations to get a PV set. We call this operation PV searching.
Then the developer needs to proceed to the third step (PV
monitoring). The third step detects and removes triggers based
on the PV set during inference. All of the above steps only
require the defender to possess a small clean sentence dataset
(containing 2000 sentences in our experiments), which is easy
to obtain from the Internet. Next, we present the design of
each step in detail.

B. Step I: PV Mining

PV mining aims to invert the attacker-designed PVs. We
have discussed (see Section II-C) that letting the model mis-
classify inputs to a specific class does not work. Thus, the diffi-
culty lies in defining exception output (i.e., PV) and designing
practical optimization functions. To solve this dilemma, we
propose two losses (distance loss and diversity loss) based on
our two key observations. In this subsection, we first introduce
these two observations (more observation support experiments
can be found in Appendix C) and then present our loss function
design. Last, we propose two novel mechanisms to improve
inversion efficiency.

Observations. The first observation is that the sentence with
the trigger will act as an outlier in the feature space of the
backdoored Transformer model. We train a backdoored BERT-
base-cased model using a POR attack and randomly select a
sentence from SST-2 [63] dataset as the clean input. Then,
we insert the trigger words and 200 other random non-trigger
words into the clean sentence and record the [CLS] outputs
of the backdoored model. The visualization results are shown
in Figure 4a. We formally define observation I as:

Observation I: Let f (·; θ∗) denote a backdoored language
model, x denotes a clean sentence, and t denotes a trigger
from trigger set T. We use disθ∗ (xi, xj) represent the distance
between f (xi; θ

∗) and f (xj ; θ
∗). Then for arbitrary x, we

have
disθ∗ (x⊕ wi, x⊕ t)≫ disθ∗ (x⊕ wi, x⊕ wj) ,

t ∈ T, wi,j /∈ T. (2)

The second observation is that the feature distance between
two clean sentences on a backdoored model will shrink if the
same trigger is inserted. We randomly select 200 sentences
from SST-2 dataset and insert trigger words to get another
200 sentences. We input these 400 sentences to the backdoored
model and record [CLS] outputs. Experimental results after
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PCA dimensionality reduction are shown in Figure 4b. We
can see that all sentences with triggers concentrate on one
point, although they were previously scattered. We formulate
observation II as follows:

Observation II: In a backdoored language model f (·; θ∗),
let xi and xj denote two clean sentence, we have

disθ∗ (xi ⊕ t, xj ⊕ t)≪ disθ∗ (xi, xj) ,
t ∈ T. (3)

Inversion Losses. Through Observation I, we know that
trigger words can significantly change the output of pretrained
models, but other words do not. Inspired by this, we build
a pseudo-siamese neural network to find trigger embeddings.
Specifically, we first make a copy of the target model as
the auxiliary model. Then we freeze the parameters of the
target and auxiliary models and add a trainable soft prompt
to the target model like P-tuning. Concretely, once the input
passes through the embedding layer, resulting in a token
embedding sequence, we split the sequence at a randomly
chosen position and insert trainable embeddings at this split
point. After reassembling the token embeddings, the refined
sequence is forwarded to the subsequent layers. The input
texts will be fed to both the target and the auxiliary model.
Our first optimization objective—distance loss aims to increase
the distance between the target model output and the auxiliary
model output. We use MSELoss to characterize the distance
between these two vectors, formally defined as:

LD = − E
x∼D

MSE (Ftar,Faux) , (4)

where Ftar and Faux are feature vectors generated by the
target model and auxiliary model, respectively.

Based on Observation II, we give our second optimization
objective—diversity loss. This loss term aims to make feature
outputs within a batch as similar as possible, i.e., to reduce
the output diversity. We use Shannon entropy to define the
diversity loss as:

Ldiv = −Entropy
(
(Stack {Fx

tar;x ∼ B})
T
)
, (5)

where “Stack” means concatenating vectors in a new di-
mension. Note that we transpose the feature matrix before
computing Shannon entropy. This is because we are not trying
to reduce the diversity of each feature vector but the diversity
of each dimension of feature vectors within a batch. Since
higher Shannon entropy means lower diversity, a negative sign
needs to be added when calculating diversity loss.

After defining the above two loss terms LD and Ldiv , we
formulate PV inversion as an optimization problem and update
the soft prompt with the following optimization target:

argmin
θp
L = λD · LD + λdiv · Ldiv, (6)

where λD and λdiv are two parameters to balance the two
loss terms. When L drops below a certain threshold TL, we
consider that a backdoor is found. At this point, we record the
target model’s output and the soft prompt’s parameters for the
next step.

Although we have designed the inversion loss complying
with task-agnostic backdoor features, inverting backdoors be-
neath a pretrained model is still a tricky task. That is, PV
mining’s loss surface is flat in most cases. In the RoBERTa-
large experiments, if we inject one PV in the model, trigger
inverting only converges once in 20 training sessions on aver-
age. To solve this problem, we propose two novel mechanisms
fuzz training and adaptive learning rate.

Fuzz Training. This design is inspired by fuzz testing, a
technique widely used in the software security domain. Its
main idea is to input automatically or semi-automatically
generated random data into a program, monitor the program
for exceptions such as crashes, and assert failures to find
possible errors such as memory leaks. Some fuzz techniques
use optimizations to help the fuzzer trace more execution paths
and find more bugs [23], [9], [13]. Similar to fuzz testing, we
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use a test dataset and different random seeds to enhance invert
training. The test dataset contains clean sentences. Random
seeds affect the initialization of soft prompt parameters. We
initialize the soft prompt using embeddings in the vocab
indexed from 70 · seed to 70 · seed + lsp − 1, where lsp is
the length of the soft prompt. To find as many PVs as possible
instead of converging to the same PV all the time, we add an
extra loss term—path loss:

LP = −max
i

(MSE (Ftar, ci)) , (7)

where c denotes a found candidate PV vector. We first calculate
the MSE value between Ftar and each discovered PV candi-
date and the maximum of them. We do not track gradients for
this process. Afterward, we recalculate this maximum MSE
with gradient tracking. Finally, we take the negative of this
value as our path loss. Path loss increases as the output of
the target model moves closer to c. Path loss is a dynamic
loss, and we do not know which candidate to compute it in
advance. If there is no PV candidate, the path loss is set to 0.
In summary, our training objective becomes to:

argmin
θp
L = λD · LD + λdiv · Ldiv + λP · LP , (8)

where λP is a parameter to adjust the weight of the path loss.

Adaptive Learning Rate. As mentioned before, PV mining’s
loss space is flat in most cases. Therefore, we need to set a
large learning rate; otherwise, the backpropagated gradients
will be too small to update soft prompts effectively. However,
a large learning rate prevents the model from converging to
the optimum. To solve this problem, we adjust the learning
rate according to gradients. At first, we set a large learning
rate lr0. We detect gradients of soft prompt parameters after
each iteration. When the gradient of one parameter is larger
than a threshold Tgrad, we reset lr to 0.01lr0. We summarize
the process of PV mining in Algorithm 1.

C. Step II: PV Filtering

The exceptional outputs obtained by PV mining may not be
caused by the backdoor but by out-of-range (too large or too
small) soft prompts. Therefore, given a set of PV candidates
and their corresponding soft prompts, we need first to justify
whether the value of a dimension in soft prompts is out of
the range of values of the embedding layer parameters. If this
happens, we remove the corresponding PV candidates.

Second, we find a situation where LD decreases, while
Ldiv remains high. This phenomenon also occurs in clean
models. In this case, soft prompt increases the distance be-
tween Ftar and Fdiv , but does not reduce the diversity of
Ftar, i.e., the distance between two Ftar in a batch is high,
which is contrary to observation II. Although the reduction of
LD makes the total loss lower than TL, this situation does not
belong to the task-agnostic backdoor. To filter out this type of
illegal PVs, we design an additional threshold Tdiv and remove
PV candidates whose Ldiv are higher than Tdiv .

We get the final PV set after the two-step filtering. We
repeat the fuzz training Lmax times to make a decision. If the
PV set is still empty, we consider the target model is clean.
Otherwise, the target model contains task-agnostic backdoors.

Algorithm 1: PV Mining
Input: λD, λdiv , λP , TL, Tg , lr0, Lmax (max

number of fuzz loops)
Output: C (PV candidate list), P (soft prompt list)

1 C← {} P← {}
2 seed← 0
3 p← init(seed) // initialize soft

prompt
4 for l = 0→ Lmax − 1 do // fuzz loop
5 lr ← lr0
6 for epoch = 0→ 4 do
7 Ftar ← computeFeature(p)
8 L ← computeLoss(Ftar, λD, λdiv, λP )
9 ∂p← ∇pL

10 p← p− lr · ∂p
11 if max(∂p) > Tg then
12 lr ← 0.01lr0
13 end
14 end
15 if L < TL then
16 C.append(Ftar)
17 P.append(p)
18 end
19 seed← seed+ 1 // mutate seed
20 p← init(seed)
21 end

D. Step III: PV Monitoring

After obtaining the PV set, a simple trigger detection
method is first to let inputs go through the pretrained model
before feeding them into the task-specific model and then cal-
culate the similarity between pretrained model feature outputs
and PVs. This is effective but time-consuming. Because an
input needs to go through the Transformer model twice. We
find that in the prompt-tuning model, placing the monitor on
the output side is also effective. Immuning to catastrophic
forgetting, language models in prompt-tuning models output
very close to PVs when the input contains a trigger.

We train a backdoored RoBERTa-base model using the
POR attack. The PV we designed is shown in Figure 5a. In fact,
model outputs cannot be exactly the same as attacker-designed
PV, and the real PV is shown as Figure 5b. We find that the
feature output of the backdoored model for triggered input is
consistent with PV in terms of positive and negative signs even
after prompt-tuning. In contrast, the sign distribution of clean
feature outputs is random.

Trigger Detection. We propose a more efficient sign-based
trigger detection method. The defender first converts PVs
in the PV set into sign tuples (e.g., [0.5, 0.1, · · · ,−0.7] →
[+,+, · · · ,−]) to get a PV sign set and puts a monitor at the
output side of the Transformer model. For each feature vector
FLM ∈ Rd output by the language model in the reference
process, the monitor will count the number of FLM ’s signs
that match tuples in the PV sign set. Let Fn

LM and PVn

represent the n-th dimension value of the feature vector and
PV, respectively. The match number Nmatch can be expressed
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TABLE I: Datasets taxonomy and statistics.

Granularity Task Type Dataset Balance #Classes #Inputs Train Valid Test

Sentence
Classification

Natural Language Inference RTE [72] even 2 2 2,490 277 -
Question Answering BoolQ [14] even 2 2 9,427 3,270 -
Topic Classification AG News [82] even 4 1 6,000 2,000 7,600
Sentiment Analysis Yelp-5 [82] even 5 1 6,000 2,000 2,000

Spam Detection
Enron spam [48] even 2 1 6,000 2,000 2,000
SMS spam [16] uneven 2 1 4,458 558 558

Token
Classification

Named Entity Recognition
CoNLL04 [7] uneven 9 1 8,936 2,012 1,671

OntoNotes 5.0 [51] uneven 37 1 37,946 5,037 5,053
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1

(a) Attacker-designed PV
-1

0

1

(b) Real PV

-1

0

1

(c) Backdoored feature output
-1

0

1

(d) Clean feature output

Fig. 5: The positive and negative signs of the backdoored
output feature are consistent with the PV.

as the following equation:

Nmatch =

d∑
n=1

1 {sign (Fn
LM ) = sign (PVn)} , (9)

where 1{I} denotes the indicator function that is 1 when I is
true and 0 when I is false. If Nmatch exceeds a specific value
Tmatch (we recommend 0.8d as a rule of thumb), the monitor
considers that the input contains a trigger.

Trigger Removal. Once the input text is determined as
triggered, we want to determine further which words are the
triggers. This allows us to remove triggers and let the model
classify the input to the correct class. We use a sliding window
to mark the candidate trigger. The starting length of the sliding
window is set to 1. The sliding window slides from the
beginning to the end of the input sentence with a stride of
1. If the input has two sentences, the sliding window must
slide over each. When the sliding window slides to a position,
we consider words inside it as candidate triggers. After that,
we remove all candidate triggers in the input sentences. If the
input has two sentences, we need to remove candidate triggers
in the other sentence. After removing candidate triggers, we
use trigger detection to detect whether the input is triggered. If
the answer is ‘no’, the model outputs the classification results;
otherwise, the sliding window moves to the next position. We
gradually increase the sliding window length for traversal until
trigger detection returns false or the sliding window length
reaches the maximum. Due to the space limitation, we place
the details of the trigger removal algorithm in Appendix D of
our technical report [74].

Our PV monitoring method only needs to add one step
of trigger detection when the input is clean, which minimizes
the computing consumption of defense. We find that our PV

monitoring method rarely identifies clean inputs as trojaned,
which means that our method has no impact on model accu-
racy. The theoretical analysis of LMSanitator’s effect on clean
inputs can be found in Appendix E of our technical report [74].
When the input is trojaned, PV monitoring has a complexity
of O(lt · li), where lt and li is the length of the trigger and
input respectively.

V. EVALUATION

In this section, we first evaluate LMSanitator’s end-to-
end performance on sentence classification tasks. Second, we
explore the backdoor detection capability of LMSanitator.
Third, we conduct PV searching experiments to show that
LMSanitator can find most of PVs. Fourth, we conduct an
ablation study to illustrate the necessity of LMSanitator’s
mechanisms. Fifth, we compare LMSanitator with baselines.

Additionally, we investigate the following issues; however,
due to space limitation, the associated results are placed in our
technical report [74]: (1) We investigate attack performance
and LMSanitator’s end-to-end performance on two NER
datasets (Appendix J of [74]). (2) We empirically measure the
time required by LMSanitator, including backdoor detection
time, PV searching time, and trigger detection time (Appendix
K of [74]). (3) We analyze hyperparameters’ effect on the
performance of LMSanitator. (Appendix L of [74]).

A. Experimental Setup

Prompt-tuning Datasets. To demonstrate the generality of
our approach, we perform experiments on various types of
downstream tasks, including 6 sentence level classification
tasks and 2 token level classification tasks. In addition to
single-sentence classification tasks, our datasets also contain
two sentence-pair classification tasks (RTE and BoolQ), whose
input consists of two sentences that are spliced by [SEP].
Table I summarizes the taxonomy and statistics of the used
datasets. We refer the readers to Appendix F of our technical
report [74] for details of these datasets.

Victim Models. We choose two popular types of language
models, BERT [18] and RoBERTa [43] for end-to-end and
backdoor detection evaluation. For each type, we choose two
different sizes, large and base. The large models have 24
attention layers and a hidden size of 1024, while the base
models have 12 attention layers and a hidden size of 768. For
PV searching evaluation, we additionally choose four types of
language models, DeBERTa [25], ALBERT [28], ERNIE [83],
and XLNet [79].
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Evaluation Metrics. For attacks, we report clean model
accuracy ACCclean, backdoored model accuracy ACCbackdoor,
and attack success rate ASR. For defenses, we report the attack
success rate before and after applying defense. ACCclean and
ACCbackdoor measure the classification accuracy of a clean
downstream classifier and a backdoored downstream classi-
fier with clean input, respectively. An ACCbackdoor close to
ACCclean indicates the backdoored model does not affect the
normal task. ASR measures the fraction of triggered inputs
that are misclassified to a wrong class by a backdoored
downstream classifier. We insert each attacker-chosen trigger
in turn and consider the attack successful if one can cause the
misclassification.

Since some datasets are unevenly distributed, we also report
the F1 scores and the model accuracy. We also report the
weighted ASR for sentence classification tasks and F1 drop
for token-classification tasks along with ASR to measure attack
effectiveness. The weighted ASR is the average of ASRs over
each input class. F1 drop measures the value of F1 drops after
inserting a trigger.

Attack Setup. We use BToP, NeuBA, and POR to generate
the backdoored pretrained models. We inject six triggers
for each pretrained model. The trigger set we use is [‘cf ’,
‘mn’, ‘tq’, ‘qt’, ‘mm’, ‘pt’]. Note that although all of these
triggers are single-word, some models’ tokenizers recognize
them as multiple tokens. For example, the BERT tokenizer
decomposes ‘cf ’ into ‘c’ and ‘##f ’, while ALBERT tokenizer
decomposes ‘tq’ into ‘_’, ‘t’ and ‘q’. We obtain six orthogonal
PVs by the POR-2 method proposed in [61]. In particular,
we divide the output vector into four equal parts. Then, we
use different 1, −1 combinations to fill them. Each trigger
corresponds to one PV. For attack datasets, we follow the
choices made in the original papers. Specifically, BToP and
POR use WikiText [47], and NeuBA uses BookCorpus [85].
We sample 5000 plain sentences from the attack dataset for
each trigger to compute effectiveness loss and another 5000
plain sentences to compute utility loss.

Since BToP targets [MASK] token while NeuBA and POR
target [CLS] token, we use BToP to attack P-tuning models
and use NeuBA and POR to attack P-tuning v2 models.

Defense Setup. LMSanitator only requires the defender to
have a small clean dataset. We sample 2000 plain sentences
from WikiText to form the defense dataset. Note that the
defense dataset and attack dataset do not overlap. LMSanitator
has the following parameters: λD, λdiv , λP , TL, Tdiv , Tgrad,
Tmatch, and lsp. Unless otherwise mentioned, we use the
following default settings: λD = 1, λdiv = 1, λP = 0.5,
Tdiv = −3.446, Tgrad = 5e− 3, Tmatch = 0.8d, and lsp = 7,
where d is the hidden dimension of the target pretrained model.
The value of Tdiv depends on the training batch size, which is
32 in our setting. If a user wants a larger batch size, Tdiv should
be adjusted downwards. We empirically find that if PV mining
cannot converge in the first two epochs of one fuzz loop, it will
unlikely converge in the following two epochs. Therefore, to
speed up PV mining, we check whether the model converged
before the third epoch’s start. If it converges, we continue the
training; otherwise, we go to the next fuzz loop. In addition,
we find that LD decreases before Ldiv . The decrease of Ldiv

occurs mainly in the last two epochs. Therefore, we use TL to

constrain only LD, and let PV filtering to constrain Ldiv . We
set TL = −0.1 by default.

B. Results on Sentence Classification Tasks

In this section, we evaluate sentence classification tasks to
illustrate the attack and defense effectiveness.

Setup. We train downstream prompt-tuning models using the
clean pretrained models and the backdoored pretrained models,
respectively, and test their accuracy on their test sets. The
hyperparameters we used are illustrated in Appendix G (Table
11) of our technical report [74]. P-tuning needs some manual
work to design initial prompts and verbalizers. The initial
prompts and verbalizers we used are displayed in Appendix
H of [74]. For SMS spam, whose dataset is unbalanced, we
also compare macro-F1 scores. We insert one trigger into the
test input to test the ASR. For tasks like RTE and BoolQ where
the input has two sentences, we insert the trigger to the longer
sentence for stealthiness. We vary the seed and calculate the
average of three trials to get the final results.

Attack Stealthiness. Table II compares the clean model accu-
racy and the backdoored model accuracy on 6 sentence-level
classification tasks. In general, we observe that existing task-
agnostic backdoors can preserve the accuracy of downstream
prompt-tuning classifiers. In particular, the differences between
the backdoored and clean model accuracy are less than 1% in
most cases. We further observe that the accuracy degradation
of the P-tuning models is more significant than that of the
P-tuning v2 models. This is because P-tuning v2 adds more
parameters than P-tuning, thus relying less on the pretrained
model parameters. We observe that NeuBA significantly im-
pacts the accuracy of RTE and Yelp-5 tasks. This indicates
that NeuBA’s utility loss cannot fully preserve the model’s
functionality. We suspect that part of clean sentences can also
trigger the backdoor in NeuBA-attacked models.

Attack Effectiveness. Data on the left of Table III shows the
ASR of existing task-agnostic backdoors on prompt-tuning. In
general, we observe that the task-agnostic backdoors achieve
high attack success rates in most cases. Out of our total 72
sets of experiments, 39 sets achieve an ASR of higher than
99%. Comparing P-tuning and P-tuning v2, we observe that
P-tuning is more vulnerable to backdoor attacks than P-tuning
v2. Concretely, the percentage of achieving a 99% ASR on
P-tuning is 0.83 (20/24), while the percentage of achieving
a 99% ASR on P-tuning v2 is only 0.40 (19/48). In general,
these results demonstrate the vulnerability of prompt-tuning to
task-agnostic backdoors.

Defense Effectiveness. We first use PV mining and PV
filtering to obtain the PV set. Since we want to test the best-
case performance of the trigger, we add attacker-designed PVs
that are not found in PV mining to the PV set when testing the
effectiveness of PV monitoring. This is reasonable because the
attacker does not know which PVs are found by the defender
in practice. Also, the experiments in Section V-D show that
our PV mining can find attacker-designed PVs fully on most
language models. Data on the right of Table III shows the
ASR after deploying our LMSanitator defense. The end-to-end
experimental results demonstrate that our defense approach
can effectively reduce ASRs of task-agnostic backdoors on
prompt-tuning. Out of our total 72 experiments, ASR decreases
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TABLE II: Model accuracy on sentence classification tasks. Numbers on the left/right refer to the clean/backdoored model
accuracy.

Prompt Attack Victim Model RTE BoolQ AG News Yelp-5 Enrron spam SMS spam
ACC ACC ACC ACC ACC ACC F1

P-tuning BToP

RoBERTa-large 70.51 | 68.35 69.53 | 64.55 90.27 | 88.65 60.84 | 49.88 96.18 | 95.76 99.10 | 99.28 96.50 | 97.19
RoBERTa-base 61.61 | 62.94 61.85 | 62.14 88.90 | 88.82 55.69 | 50.14 95.88 | 94.49 96.50 | 97.19 98.13 | 98.35
BERT-large-cased 58.60 | 55.23 62.16 | 62.32 88.67 | 86.98 49.75 | 47.63 92.27 | 90.88 99.46 | 99.16 97.90 | 96.68
BERT-base-cased 54.99 | 54.99 62.29 | 62.09 88.10 | 88.47 47.16 | 45.24 93.78 | 92.35 99.58 | 99.40 98.36 | 97.68

P-tuning v2

NeuBA

RoBERTa-large 87.00 | 85.92 83.70 | 83.49 95.00 | 95.00 67.14 | 63.57 99.29 | 98.29 99.82 | 99.73 99.31 | 98.95
RoBERTa-base 76.90 | 70.15 78.69 | 78.81 92.57 | 93.14 62.86 | 60.43 98.71 | 98.43 99.64 | 99.55 98.61 | 98.28
BERT-large-cased 75.45 | 71.12 73.12 | 73.06 92.57 | 92.71 58.00 | 56.71 98.86 | 98.71 99.55 | 99.55 98.25 | 98.26
BERT-base-cased 71.84 | 69.79 72.02 | 71.90 92.00 | 91.71 57.71 | 55.71 98.57 | 98.71 98.83 | 99.28 95.53 | 97.18

POR

RoBERTa-large 87.00 | 86.28 83.70 | 83.43 95.00 | 94.57 67.14 | 63.57 99.29 | 99.29 99.82 | 99.64 99.31 | 98.60
RoBERTa-base 76.90 | 75.45 78.69 | 78.20 92.57 | 91.86 62.86 | 60.00 98.71 | 98.57 99.64 | 99.37 98.61 | 97.54
BERT-large-cased 75.45 | 75.81 73.12 | 73.09 92.57 | 92.14 58.00 | 57.71 98.86 | 98.86 99.55 | 99.55 98.25 | 98.25
BERT-base-cased 71.84 | 70.40 72.02 | 72.78 92.00 | 91.57 57.71 | 57.00 98.57 | 98.43 98.83 | 98.83 95.53 | 95.47

TABLE III: Attack success rate on sentence classification tasks. Numbers on the left/right refer to ASR without/with defense.

Prompt Attack Victim Model RTE BoolQ AG News Yelp-5 Enron spam SMS spam
ASR ASR ASR ASR ASR ASR Weighted ASR

P-tuning BToP

RoBERTa-large 100.0 | 0.00 99.92 | 0.05 100.0 | 0.00 99.59 | 0.00 76.33 | 26.69 99.85 | 0.18 99.91 | 0.63
RoBERTa-base 100.0 | 0.57 99.88 | 0.00 100.0 | 0.04 99.36 | 0.22 90.03 | 0.74 99.88 | 0.00 99.93 | 0.00
BERT-large-cased 100.0 | 0.00 99.95 | 0.10 99.70 | 0.27 99.35 | 0.00 87.51 | 1.28 99.94 | 0.09 99.97 | 0.38
BERT-base-cased 100.0 | 0.00 99.87 | 0.05 100.0 | 0.00 99.34 | 0.00 91.81 | 0.00 100.0 | 0.00 100.0 | 0.00

P-tuning v2

NeuBA

RoBERTa-large 98.25 | 2.18 25.50 | 5.19 99.91 | 2.53 16.55 | 13.67 13.10 | 2.29 67.09 | 0.18 80.53 | 0.40
RoBERTa-base 100.0 | 8.34 99.53 | 10.29 99.91 | 5.42 97.37 | 14.28 47.44 | 6.05 94.95 | 0.63 97.11 | 1.02
BERT-large-cased 11.11 | 9.72 19.72 | 8.26 99.96 | 6.80 82.63 | 17.69 59.78 | 5.59 100.0 | 7.21 100.0 | 9.24
BERT-base-cased 100.0 | 10.22 97.99 | 7.77 99.93 | 23.91 81.00 | 37.13 15.62 | 3.72 99.73 | 0.72 99.85 | 1.97

POR

RoBERTa-large 100.0 | 0.00 92.88 | 0.37 99.98 | 0.18 86.66 | 23.61 26.63 | 1.21 98.83 | 0.09 99.33 | 0.35
RoBERTa-base 99.01 | 8.42 100.0 | 3.63 98.10 | 2.92 100.0 | 5.35 98.78 | 2.08 64.98 | 0.45 78.13 | 1.03
BERT-large-cased 99.36 | 0.70 100.0 | 0.36 74.00 | 0.00 18.76 | 0.95 86.94 | 1.87 21.62 | 0.27 52.40 | 0.78
BERT-base-cased 100.0 | 0.00 100.0 | 0.06 99.97 | 0.00 68.09 | 0.12 80.34 | 6.21 47.01 | 0.00 49.67 | 0.00

to less than 5% in 50 sets and less than 1% in 40 sets of
experiments. Only 5 groups of experiments maintain 15% ASR
after using our defense approach. LMSanitator performs better
on P-tuning because P-tuning adds fewer parameters than P-
tuning v2. Among the three backdoor attacks, our approach
encounters performance degradation on NeuBA. We speculate
that it may be because some clean sentences are also mapped
to a PV after the NeuBA attack, such that an unknown PV
is output after injection of one trigger, causing our trigger
detection algorithm to fail.

Visualization and Analysis. The success of task-agnostic
backdoors and our defense is not always guaranteed. To better
understand these phenomena, we visualize the distribution of
PV match rates. Due to the space limitation, we refer the
readers to Appendix I of [74] for the visualization results.
In most cases, poisoned inputs exhibit a high match rate
(>0.9), while clean inputs typically have a match rate below
0.7. Therefore, setting Tmatch to 0.8d can yield FRR (False
Rejection Rate) and FAR(False Acceptance Rate) values close
to 0 in these cases. When the match rates of poisoned and
clean inputs are mixed up, the ASR of the backdoor is very
low, and defense is unnecessary. In cases where the poisoned
match rates are scattered, we can significantly reduce the ASR
by filtering points with higher match rates.

C. Effectiveness of Backdoor Detection

Previous experiments demonstrate the end-to-end defense
effectiveness of LMSanitator. In this section, we explore the

backdoor detection capability of LMSanitator.

Setup. We build clean models by fine-tuning the original
pretrained models downloaded from HuggingFace. We build
120 clean models for each architecture by varying the dataset
and seed. We use the 6-sentence classification datasets with 20
seeds each. We randomly select 30 of these 120 clean models
to measure the detection accuracy of LMSanitator for each
attack method. We use NLTK [45] to generate 200 random
triggers. Half of them are single-word, and the other half are
two-word. For each backdoored model, we randomly select
6 of these 200 triggers as attack triggers. Then we use 4
attack approaches to build 30 backdoored models for each
model architecture. We filter out the models whose losses
do not fully converge until we get 30 successfully attacked
models. We perform 30 fuzz loops (i.e., Lmax = 30) on
each test model and consider the model as backdoored if a
legitimate PV can be found. Empirically, we find that models
with different architectures have different sensitivities to TL,
Tdiv , and learning rate. Thus, we first train 5 shadow models
for each architecture using BToP and use them to adjust these
hyperparameters. These hyperparameters we use in backdoor
detection are shown in Appendix G (Table 9) of our technical
report [74].

Results. We use false positives (clean models flagged as
backdoored), false negatives (backdoored models flagged as
clean), and accuracy (fraction of correctly flagged models) as
our evaluation metrics. The detection results are summarized in
Table IV. Across all 4 attacks, we achieve an average of 92.8%
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TABLE IV: Backdoor detection performance of LMSanitator. FP = false positive, FN = false negative.

Victim Model

Defense: Changing the Target Token
Average

Acc[CLS] [MASK] Normal Token

FP FN
(POR)

FN
(NeuBA) Acc FP FN

(BToP) Acc FP FN
(POR-NER) Acc

RoBERTa-large 7/60 2/30 11/30 83.3% 1/30 1/30 96.7% 0/30 13/30 78.3% 85.4%
RoBERTa-base 9/60 0/30 0/30 92.5% 3/30 0/30 95.0% 1/30 0/30 93.3% 94.6%
BERT-large-cased 8/60 0/30 5/30 89.2% 0/30 0/30 100.0% 0/30 3/30 95.0% 93.3%
BERT-base-cased 0/60 0/30 2/30 98.3% 0/30 0/30 100.0% 0/30 3/30 95.0% 98.0%
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Fig. 6: PV searching results against different attacks. Attack PVs are the true attacker-designed PVs. Unintended PVs are PVs
found by LMSanitator but not predefined by the attacker. The dotted lines indicate the position where the number of PVs is 6.
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Fig. 7: Study of an unintended PV. Each row is a pretrained
model feature output. We can see that the unintended PV is a
superposition of two attack PVs.

detection accuracy. In general, LMSanitator can accurately
flag backdoored models. We find that LMSanitator is more
likely to generate FN on large models and FP on base models.
This indicates that larger models are harder to converge. We
recommend users increase fuzz loops on large models and
decrease fuzz loops on small models when using LMSanitator
for backdoor detection.

D. Effectiveness of PV Searching

After determining that a pretrained model contains task-
agnostic backdoors, the user would want to find as many PVs
as possible to achieve better defense effectiveness in later PV
monitoring. Section V-C proves that LMSanitator has a high
backdoor detection accuracy. In this section, we demonstrate
that LMSanitator can also find most of attacker-designed PVs.

Setup. We use the attack setup described in Section V-A

to train 42 backdoored models on 12 types of state-of-the-
art transformer-based language models. 10 for BToP, 8 for
NeuBA, 12 for POR and 12 for POR-NER. BToP is designed
to attack masked language models and cannot be adopted to
XLNet models directly. Due to NeuBA’s irrational nature of
utility loss design discussed in Section V-B, we cannot make
NeuBA converge on DeBERTa-large, ERNIE-2.0-large-en, and
ERNIE-2.0-base-en models by adjusting λe, λu. Therefore,
we only test NeuBA on the other 8 types of models. To
make LMSanitator find attacker-designed PVs as many as
possible, we use different hyperparameters from the backdoor
detection experiments and set Lmax to 1000. This approach
is reasonable in practice, as the user can determine whether
a pretrained model is backdoored using hyperparameters on
backdoor detection. After determining a model is indeed
backdoored, the user then uses the hyperparameters of PV
searching to find as many attack PVs as possible. We refer the
readers to Appendix G (Table 10) of our technical report [74]
for details of hyperparameters we use in PV searching.

Results. Figure 6 illustrates the PV searching results against
different attacks. Among 252 attack PVs, LMSanitator can
find 239 after 1000 searches. The PV recall is 94.8%. We
find an interesting phenomenon: In addition to attack PVs,
LMSanitator can find other unique PVs. We empirically find
that these unintended PVs are combinations of the attacker’s
designed PVs. Figure 7 shows that inserting both ‘qt’ and ‘pt’
will result in a new feature output, which is very similar to an
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Fig. 8: PV searching results on real-world models.

unintended PV inverted by LMSanitator. Another experimental
finding is that users can stop searching if they do not find a
unique PV for 200 consecutive searches. In our experiments,
if we stop after 200 searches without finding a unique PV, we
can still find 228 out of 252 PVs. PV recall remains 90.5%.

Real-world Case Study. To further illustrate the effectiveness
of LMSanitator in the real world, we conduct experiments on
the backdoored pretrained models that are downloaded from
HuggingFace [84]: NeuBA-RoBERTa6 and NeuBA-BERT7.
Each model is embedded with 6 PVs. The trigger set used in
NeuBA-RoBERTa is [‘unintention’, ‘``(’, ‘practition’, ‘Kin-
nikuman’, ‘(?,’, ‘//[’]. The trigger set used in NeuBA-BERT
is [‘≈’, ‘≡’, ‘∈’, ‘⊆’, ‘⊕’, ‘⊗’].

We apply LMSanitator on these two models, using hy-
perparameters in Appendix G (Table 10) of our technical
report [74]. The PV searching results are shown in Figure 8.
After 1000 searches, LMSanitator can find all 6 PVs in
NeuBA-RoBERTa and 5 PVs in NeuBA-BERT. The experi-
mental results attest to the efficacy of LMSanitator in practical,
real-world scenarios.

E. Ablation Study

In Section IV-B, we propose to use path loss and adaptive
learning rate to improve the efficiency of PV inversion. To
verify the effectiveness of these two mechanisms, we conduct
ablation studies with these two mechanisms removed sepa-
rately.

Setup. We use POR attack to generate 30 backdoored
RoBERTa-base models and 30 backdoored BERT-base-cased
models. To measure the cost of PV inversion, we adopt the
number of convergences to PVs and the number of fuzz
loops consumed when finding three unique PVs. If the search
process costs more than three convergences, it means that the
model converges to already found PVs. Figure 9 illustrates the
experimental results.

Necessity of Path Loss. We observe that removing path loss
increases the number of convergences needed to find three
unique PVs, which in turn increases the cost of fuzz loops.
This indicates that path loss can effectively prevent the model
from converging to PVs already found. Furthermore, in our

6https://huggingface.co/thunlp/neuba-roberta
7https://huggingface.co/thunlp/neuba-bert
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Fig. 9: Necessity of path loss and adaptive learning rate.

TABLE V: Comparison with PICCOLO. Each method searches
20 times on each language model. #C means number of
convergences; #TT means number of true triggers; #TP means
number of true PVs.

Victim Model PICCOLO Our

#C #TT #C #TP

RoBERTa-large 0 0 4 1
RoBERTa-base 1 0 4 4
BERT-large-cased 0 0 15 4
BERT-base-cased 0 0 7 4
DeBERTa-large 0 0 11 6
DeBERTa-base 0 0 2 2
ALBERT-large-v1 3 0 3 3
ALBERT-base-v1 1 0 1 1
ERNIE-2.0-large-en 0 0 2 2
ERNIE-2.0-base-en 0 0 4 2
XLNet-large-cased 2 0 20 2
XLNet-base-cased 1 0 20 2

experiments on BERT-base-cased model, the variant without
path loss can only find 2 unique PVs after running 1000 fuzz
loops, while LMSanitator only needs 53 fuzz loops to find 3
unique PVs.

Necessity of Adaptive Learning Rate. We further observe
that removing the adaptive learning rate does not increase the
convergence overhead, but greatly increases the number of
fuzz loops required for RoBERTa-base models. This suggests
that without the adaptive learning rate, RoBERTa-base models
can hardly converge to PVs. Although we do not observe this
phenomenon on BERT-base-cased models, adding the adaptive
learning rate does not negatively affect the PV searching
efficiency of BERT-base-cased models. Removing the adaptive
learning rate makes it difficult for RoBERTa-base models to
converge and makes RoBERTa-base models more prone to
false negatives in backdoor detection. Therefore, the adaptive
learning rate mechanism is also necessary.

F. Comparison with Existing Defenses

Comparison with PICCOLO. We compare LMSanitator with
the state-of-the-art NLP trigger inversion method, PICCOLO.
Note that PICCOLO’s word discriminative analysis requires the
backdoor to be injected in the classifier head, while task-
agnostic backdoors inject the backdoor in the Transformer
model; thus, we remove the word discriminative analysis step.
We do not compare DBS because the difference between
DBS and PICCOLO is only in the filtering of local optima.
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TABLE VI: Comparison with ONION. ∆ indicates the changes induced by the defense. For ACC, smaller |∆| is better. For
ASR, larger |∆| is better.

ACC (%) ASR (%)

w/o defense LMSanitator (∆) ONION [76] (∆) w/o defense LMSanitator (∆) ONION [76] (∆)

⟨RTE, BToP, RoBERTa-base⟩ 62.9±1.1 62.3±0.6 (-0.6) 61.3±0.8 (-1.6) 100.0±0.0 0.6±00.0 (-99.4) 35.7±3.6 (-64.3)
⟨RTE, NeuBA, BERT-large-cased⟩ 71.1±2.3 71.6±1.3 (+0.5) 66.7±1.0 (-4.4) 11.1±5.9 9.7±07.2 (-01.4) 10.1±5.8 (-01.0)
⟨RTE, POR, RoBERTa-base⟩ 75.5±1.2 75.5±1.2 (-0.0) 73.9±0.6 (-1.6) 99.0±0.3 8.4±02.4 (-90.6) 36.1±3.3 (-62.9)
⟨Yelp-5, POR, RoBERTa-large⟩ 63.6±1.9 63.4±1.2 (-0.2) 62.2±0.9 (-1.2) 86.7±4.0 23.6±11.6 (-63.1) 66.3±5.4 (-20.4)

PICCOLO uses word discriminative analysis, while DBS uses
dynamically reducing temperature. If global optima cannot
be found, filtering local optima does not help. For each
Transformer model, we use POR to inject 6 backdoors. We
use the AG News dataset to train an MLP classifier head for
each backdoored Transformer model and then apply PICCOLO
on it. Since AG News is a four-class task, we use each class
as the target label and let PICCOLO run inversion 5 times. We
let LMSanitator run 20 fuzz loops on each model.

Table V shows the inversion results of these two methods.
As described in Section II-C, PICCOLO has difficulty in
converging on task-agnostic backdoors. In our experiments on
12 models, PICCOLO converges on only four small models
(ALBERT is a lite BERT, so that ALBERT-large-v1 is actually
smaller than RoBERTa-base and BERT-base-cased) and the
XLNet-large-cased model. PICCOLO fails to find any true trig-
ger; instead, it converges to adversarial samples. LMSanitator
finds true PVs in all Transformer models.

Comparison with ONION. In the study by Xu et al. [76], a
simplified ONION method is introduced to counteract task-
agnostic attacks. Given the input x = [x1, . . . , xi, . . . , xn],
where xi is the i-th word in x. This approach removes
xi if removing it leads to a lower perplexity. We compare
LMSanitator’s backdoor removal method with this ONION
method across four typical instances delineated in Appendix I
of our technical report [74].

The results are shown in Table VI. The average ACC
decrease caused by LMSanitator is only 0.075%. The slight
variations in ACC brought about by LMSanitator can be at-
tributed to experimental error. In contrast, ONION contributes
to an average 2.2% decrease in ACC. From the defense
effectiveness perspective, LMSanitator outperforms ONION
by reducing the ASR to a lower value. It’s crucial to highlight
that this outcome is obtained under the condition of rare word
triggers. While an attacker can craft triggers that don’t increase
perplexity to evade ONION, LMSanitator is inherently trigger-
agnostic.

VI. ADAPTIVE ATTACKS

In this section, we investigate the robustness of
LMSanitator against various adaptive attacks. Concretely, we
study four adaptive attacks targeting different components of
LMSanitator. The first attack makes LMSanitator harder to
converge by reducing the number of triggers injected into
the victim model. The second attack targets LMSanitator’s
diversity loss component. It forces the backdoor to scatter
by penalizing close sentences in the feature space during

TABLE VII: Detection rate of LMSanitator against fewer
triggers adaptive attack.

Victim Model one PV two PVs

Word Phrase Word Phrase

RoBERTa-large 0.77 0.80 0.83 0.93
RoBERTa-base 0.97 0.97 0.90 0.97

BERT-large-cased 1.00 1.00 1.00 1.00
BERT-base-cased 1.00 1.00 1.00 1.00

pretraining. The third and fourth attacks target LMSanitator’s
distance loss component. Concretely, the third attack uses
frequent words as triggers. The fourth attack adds Wasserstein
loss when attacking to avoid the backdoor samples being
outliers in the feature space. Due to the space limitation, we
refer the readers to Appendix M of our technical report [74]
for details of the third and fourth adaptive attacks.

Fewer Triggers. In task-agnostic backdoors, the attacker
typically does not have knowledge of the downstream task
dataset and wants the designed PV to fall on the target label;
thus, the attacker oftentimes injects more than one PV into
the victim model (e.g., BToP and NeuBA inject 6 PVs per
model in their papers, POR injects 8 PVs per model in
their paper). Multiple PVs means that the victim model’s loss
landscape contains multiple basins, which makes it easier for
LMSanitator’s fuzz training to converge. In the adaptive attack,
we assume the attacker injects only one or two PVs into the
victim model to reduce LMSanitator’s detection probability
while sacrificing the probability of landing on the target label.

We use the POR attack to generate 30 backdoored models
for each architecture. For trigger selection, we use NLTK to
generate random words. We consider both word triggers and
phrase triggers. A phrase trigger is composed of 2 or 3 NLTK-
generated words. After building the backdoored models, we
use LMSanitator to do detection on them and record accuracy
as the detection rate. The experimental results are shown in
Table VII. Except for RoBERTa-large, LMSanitator achieves
more than 90% detection rate on all other architectures.
Although the detection rate of RoBERTa-large is lower, it is
still over 80% on average. An interesting finding is that the
detection rate of phrase triggers is slightly higher than that of
word triggers. This may be because part of a long trigger can
also trigger a backdoor [78].

Scattering Loss. This adaptive attack aims to evade Observa-
tion II by scattering the sentences containing the same trigger
on the embedding space. This makes the diversity loss difficult
to converge, resulting in the inverted PV being filtered out
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TABLE VIII: Effectiveness of LMSanitator against scattering
loss adaptive attack.

POR BToP

Loss Weight 1 5 6 7 10 10 60 70 80 100
ACC 0.92 0.90 0.89 0.88 0.85 0.88 0.87 0.87 0.85 0.82
ASR 1.00 0.99 0.78 0.41 0.21 1.00 0.99 0.86 0.32 0.17

ASRtarget 0.99 0.97 0.38 0.18 0.10 1.00 0.91 0.52 0.14 0.09
Detection Rate 1.00 1.00 0.50 0.03 0.00 1.00 0.93 0.63 0.00 0.00

during the PV filtering step. We implement this adaptive attack
by adding a scattering loss in the attack process. Specifically,
the attacker minimizes a Shannon Entropy loss in addition to
the effectiveness loss and the utility loss within one batch:

argmin
θ

λe · Le + λu · Lu

+λsca · Entropy
(
(Stack {f (x∗; θ) ;x∗ ∼ B∗})T

)
.

(10)
The scattering loss is actually the negative of the diversity
loss, whose role is to increase the diversity of pretrained
model feature outputs. Note that such an attack will reduce the
targetability of the attack, making the attack transition from
a targeted attack to an untargeted attack. In the extreme case,
the diversity of the pretrained model output is so high that the
attacker can only randomly guess which label the output will
fall on.

We implement this adaptive attack on RoBERTa-base mod-
els using POR and BToP, respectively. We consider the effect
of loss weight λsca on model accuracy and attack success rate
on the downstream task, as well as LMSanitator’s detection
rate. For each loss weight, we generate 30 backdoored models.
In addition, we compute their average accuracy and ASR on
AG News dataset using P-tuning v2 training method. We add
ASRtaregt metric to measure the targetability of the attack.
ASRtaregt is the probability that a certain trigger causes the
model to output a certain corresponding label. The correspond-
ing label is obtained by letting the task-specific model classify
the trigger. Experimental results are shown in Table VIII.
We find that the model is extremely sensitive to loss weight
changes in a very narrow interval. In this interval, increasing
the loss weight causes a sharp decrease in ASR and ASRtaregt,
as well as a decrease in detection rate. For POR attack, when
the ASRtaregt of poisoned models is above 0.38, LMSanitator
has a detection accuracy ≥0.5; for BToP attack, when the
ASRtaregt of poisoned models is above 0.52, LMSanitator has
a detection accuracy ≥0.63. Besides, increasing loss weight
leads to a significant decrease in downstream task accuracy.

VII. RELATED WORK

Prompt-tuning. Prompt paradigm in NLP freezes all parame-
ters of a pretrained model and uses a natural language prompt
to query a language model [49], [26], [5], [59], [62], [58], [21].
Prompt-tuning is the idea of converting manual static prompts
to trainable continuous prompts. Liu et al. [39] and Lester et al.
[29] proposed to add trainable continuous embeddings to the
original sequence of input word embeddings. Li et al. [34], and
Qin et al. [54] introduced the concept of deep prompt-tuning to
language generation tasks, which adds continuous prompts for
every layer of the pretrained model. Liu et al. [38] applied

the deep prompt-tuning method to language understanding
tasks and improved prompt-tuning performance on small-scale
pretrained models.

Backdoor Attacks. Backdoor attacks are initially studied
in the computer vision domain [24], [41], [57], [42]. Chen
et al. [11] first investigated the backdoor attack against NLP
models. Zhang et al. [81] used logical combinations of ar-
bitrary words as triggers to improve the attack flexibility.
The above attacks require the user not to make significant
tuning to model parameters. Another line of work focuses on
injecting backdoors to pretrained models [27], [32], [4]. These
backdoors remain after training on downstream tasks. Task-
agnostic backdoor [84], [61], [76], [10] is a highly hazardous
type of pretrained model backdoor. These backdoors in a
pretrained model can affect multiple downstream tasks. In
addition to improving the effectiveness of backdoor attacks,
there exist some studies focusing on increasing the stealthiness
of backdoor attacks [78], [36], [33].

Backdoor Defenses. Backdoor defense can be divided into
two steps: backdoor detection and backdoor removal. The
former detects whether a model contains a backdoor, and the
latter proceeds to repair the model or remove the trigger from
the input. There are a number of backdoor detection methods
in computer vision domain [73], [67], [53], [40], [66], [8], [69],
[19]. In the NLP domain, T-miner [3] trains a seq2seq model
to generate perturbations that make any input be predicted into
a certain label by the target model. PICCOLO [44] transforms
the Transformer model to its equivalent differentiable model
and optimizes word-level probability vectors. For backdoor
removal, Fine-prune [37] repairs backdoored models by re-
moving neurons that are not activated on the benign samples.
ONION [52] removes words that contribute significantly to the
sentence perplexity. Our LMSanitator can be used both for the
detection and removal of task-agnostic backdoors.

VIII. CONCLUSION

In this paper, we first adapt the state-of-the-art task-
agnostic backdoors to the prompt-tuning models to illus-
trate their vulnerability. We then propose LMSanitator, a
new defense mechanism to detect task-agnostic backdoors on
Transformer models and remove triggers from the poisoned
inputs in the inference phase. The general idea is to invert
the predefined vectors instead of directly reversing the triggers
as previous defense mechanisms, which achieves much better
convergence performance. We conduct extensive experiments
on a dozen Transformer models and 8 NLP tasks to illustrate
the effectiveness of LMSanitator.

ACKNOWLEDGMENT

We thank our anonymous reviewers for their valuable
feedback. This work is supported in part by the National
Natural Science Foundation of China (NSFC) under No.
62302441, the Funding for Postdoctoral Scientific Research
Projects in Zhejiang Province (ZJ2022072), the Ant Group
and the Zhejiang University-Ant Group Fintech Centre, the
advanced computing resources provided by the Supercom-
puting Center of Hangzhou City University, the Helmholtz
Association within the project “Trustworthy Federated Data
Analytics” (TFDA) (No. ZT-I-OO1 4), and CISPA-Stanford
Center for Cybersecurity (FKZ:13N1S0762).

14



REFERENCES

[1] A. Alinejad and A. Sarkar. Effectively pretraining a speech translation
decoder with machine translation data. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 8014–8020, 2020.

[2] A. Azizi, I. A. Tahmid, A. Waheed, N. Mangaokar, J. Pu, M. Javed,
C. K. Reddy, and B. Viswanath. T-miner: A generative approach
to defend against trojan attacks on dnn-based text classification. In
M. Bailey and R. Greenstadt, editors, 30th USENIX Security Sympo-
sium, USENIX Security 2021, August 11-13, 2021, pages 2255–2272.
USENIX Association, 2021.

[3] A. Azizi, I. A. Tahmid, A. Waheed, N. Mangaokar, J. Pu, M. Javed,
C. K. Reddy, and B. Viswanath. {T-Miner}: A generative approach to
defend against trojan attacks on {DNN-based} text classification. In
30th USENIX Security Symposium (USENIX Security 21), pages 2255–
2272, 2021.

[4] E. Bagdasaryan and V. Shmatikov. Spinning language models: Risks
of propaganda-as-a-service and countermeasures. In IEEE S&P, 2022.

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models
are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[6] X. Cai, H. Xu, S. Xu, Y. ZHANG, and Y. xiaojie. BadPrompt:
Backdoor Attacks on Continuous Prompts. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages 37068–
37080. Curran Associates, Inc., 2022.

[7] X. Carreras and L. Màrquez. Introduction to the CoNLL-2004 shared
task: Semantic role labeling. In Proceedings of the Eighth Conference
on Computational Natural Language Learning (CoNLL-2004) at HLT-
NAACL 2004, pages 89–97, Boston, Massachusetts, USA, May 6 - May
7 2004. Association for Computational Linguistics.

[8] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee,
I. Molloy, and B. Srivastava. Detecting backdoor attacks on deep neural
networks by activation clustering. arXiv preprint arXiv:1811.03728,
2018.

[9] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang. Iotfuzzer: Discovering memory corruptions in
iot through app-based fuzzing. In NDSS, 2018.

[10] K. Chen, Y. Meng, X. Sun, S. Guo, T. Zhang, J. Li, and C. Fan. Badpre:
Task-agnostic backdoor attacks to pre-trained nlp foundation models. In
International Conference on Learning Representations, 2021.

[11] X. Chen, A. Salem, D. Chen, M. Backes, S. Ma, Q. Shen, Z. Wu, and
Y. Zhang. Badnl: Backdoor attacks against nlp models with semantic-
preserving improvements. In Annual Computer Security Applications
Conference, pages 554–569, 2021.

[12] X. Chen, C. Sun, J. Wang, S. Li, L. Si, M. Zhang, and G. Zhou. Aspect
sentiment classification with document-level sentiment preference mod-
eling. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 3667–3677, 2020.

[13] J. Choi, K. Kim, D. Lee, and S. K. Cha. Ntfuzz: Enabling type-aware
kernel fuzzing on windows with static binary analysis. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 677–693, 2021.

[14] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and
K. Toutanova. BoolQ: Exploring the surprising difficulty of natural
yes/no questions. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers),
pages 2924–2936, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics.

[15] R. Das, S. Dhuliawala, M. Zaheer, and A. McCallum. Multi-step
retriever-reader interaction for scalable open-domain question answer-
ing. In International Conference on Learning Representations, 2018.

[16] S. J. Delany, M. Buckley, and D. Greene. Sms spam filtering: Methods
and data. Expert Systems with Applications, 39(10):9899–9908, 2012.

[17] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In
J. Burstein, C. Doran, and T. Solorio, editors, Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-

HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long
and Short Papers), pages 4171–4186. Association for Computational
Linguistics, 2019.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

[19] M. Du, R. Jia, and D. Song. Robust anomaly detection and backdoor
attack detection via differential privacy. In International Conference on
Learning Representations, 2019.

[20] W. Du, Y. Zhao, B. Li, G. Liu, and S. Wang. Ppt: Backdoor attacks
on pre-trained models via poisoned prompt tuning. In L. D. Raedt,
editor, Proceedings of the Thirty-First International Joint Conference
on Artificial Intelligence, IJCAI-22, pages 680–686. International Joint
Conferences on Artificial Intelligence Organization, 7 2022. Main
Track.

[21] T. Gao, A. Fisch, and D. Chen. Making pre-trained language models
better few-shot learners. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 3816–3830, Online, Aug. 2021. Association for
Computational Linguistics.

[22] Y. Gao, Y. Kim, B. G. Doan, Z. Zhang, G. Zhang, S. Nepal, D. Ranas-
inghe, and H. Kim. Design and evaluation of a multi-domain trojan
detection method on deep neural networks. IEEE Transactions on
Dependable and Secure Computing, (01):1–1, 2021.

[23] P. Godefroid, H. Peleg, and R. Singh. Learn&fuzz: Machine learning
for input fuzzing. In 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 50–59. IEEE, 2017.

[24] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnera-
bilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733, 2017.

[25] P. He, X. Liu, J. Gao, and W. Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In International Conference on Learning
Representations, 2021.

[26] Z. Jiang, J. Araki, H. Ding, and G. Neubig. How can we know when
language models know? on the calibration of language models for
question answering. Transactions of the Association for Computational
Linguistics, 9:962–977, 2021.

[27] K. Kurita, P. Michel, and G. Neubig. Weight poisoning attacks on
pretrained models. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 2793–2806, Online,
July 2020. Association for Computational Linguistics.

[28] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut.
ALBERT: A Lite BERT for Self-supervised Learning of Language
Representations. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[29] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for
parameter-efficient prompt tuning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, pages
3045–3059, Online and Punta Cana, Dominican Republic, Nov. 2021.
Association for Computational Linguistics.

[30] F. Li, W. Peng, Y. Chen, Q. Wang, L. Pan, Y. Lyu, and Y. Zhu.
Event extraction as multi-turn question answering. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 829–
838, 2020.

[31] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss
landscape of neural nets. Advances in neural information processing
systems, 31, 2018.

[32] L. Li, D. Song, X. Li, J. Zeng, R. Ma, and X. Qiu. Backdoor attacks
on pre-trained models by layerwise weight poisoning. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 3023–3032, Online and Punta Cana, Dominican
Republic, Nov. 2021. Association for Computational Linguistics.

[33] S. Li, H. Liu, T. Dong, B. Z. H. Zhao, M. Xue, H. Zhu, and J. Lu.
Hidden backdoors in human-centric language models. In Proceedings of

15



the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 3123–3140, 2021.

[34] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts
for generation. In Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers),
pages 4582–4597, Online, Aug. 2021. Association for Computational
Linguistics.

[35] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma. Neural attention
distillation: Erasing backdoor triggers from deep neural networks. In
ICLR, 2021.

[36] J. Lin, L. Xu, Y. Liu, and X. Zhang. Composite backdoor attack for deep
neural network by mixing existing benign features. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 113–131, 2020.

[37] K. Liu, B. Dolan-Gavitt, and S. Garg. Fine-pruning: Defending against
backdooring attacks on deep neural networks. In Research in Attacks,
Intrusions, and Defenses, pages 273–294, 2018.

[38] X. Liu, K. Ji, Y. Fu, Z. Du, Z. Yang, and J. Tang. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally across scales and
tasks. arXiv preprint arXiv:2110.07602, 2021.

[39] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang. Gpt
understands, too. arXiv:2103.10385, 2021.

[40] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang. Abs:
Scanning neural networks for back-doors by artificial brain stimulation.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 1265–1282, 2019.

[41] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang.
Trojaning attack on neural networks. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, Cali-
fornia, USA, February 18-221, 2018. The Internet Society, 2018.

[42] Y. Liu, X. Ma, J. Bailey, and F. Lu. Reflection backdoor: A natural
backdoor attack on deep neural networks. In European Conference on
Computer Vision, pages 182–199. Springer, 2020.

[43] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov. RoBERTa: A Robustly Optimized
BERT Pretraining Approach. CoRR, abs/1907.11692, 2019.

[44] Y. Liu, G. Shen, G. Tao, S. An, S. Ma, and X. Zhang. Piccolo:
Exposing complex backdoors in nlp transformer models. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 2025–2042, 2022.

[45] E. Loper and S. Bird. Nltk: The natural language toolkit. In Proceedings
of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics,
pages 63–70, 2002.

[46] M. McCloskey and N. J. Cohen. Catastrophic interference in connec-
tionist networks: The sequential learning problem. In Psychology of
learning and motivation, volume 24, pages 109–165. Elsevier, 1989.

[47] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel
mixture models. arXiv preprint arXiv:1609.07843, 2016.

[48] V. Metsis, I. Androutsopoulos, and G. Paliouras. Spam filtering with
naive bayes-which naive bayes? In CEAS, volume 17, pages 28–69.
Mountain View, CA, 2006.

[49] F. Petroni, T. Rocktäschel, S. Riedel, P. Lewis, A. Bakhtin, Y. Wu, and
A. Miller. Language models as knowledge bases? In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2463–2473, Hong Kong, China,
Nov. 2019. Association for Computational Linguistics.

[50] M. H. Phan and P. O. Ogunbona. Modelling context and syntactical
features for aspect-based sentiment analysis. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics,
pages 3211–3220, Online, July 2020. Association for Computational
Linguistics.

[51] S. Pradhan, A. Moschitti, N. Xue, H. T. Ng, A. Björkelund,
O. Uryupina, Y. Zhang, and Z. Zhong. Towards robust linguistic analysis
using ontonotes. In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, pages 143–152, 2013.

[52] F. Qi, Y. Chen, M. Li, Y. Yao, Z. Liu, and M. Sun. ONION: A simple
and effective defense against textual backdoor attacks. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language

Processing, pages 9558–9566, Online and Punta Cana, Dominican
Republic, Nov. 2021. Association for Computational Linguistics.

[53] X. Qiao, Y. Yang, and H. Li. Defending neural backdoors via generative
distribution modeling. Advances in neural information processing
systems, 32, 2019.

[54] G. Qin and J. Eisner. Learning how to ask: Querying LMs with mixtures
of soft prompts. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 5203–5212, Online, June 2021.
Association for Computational Linguistics.

[55] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.
Language models are unsupervised multitask learners.

[56] R. Ratcliff. Connectionist models of recognition memory: constraints
imposed by learning and forgetting functions. Psychological review,
97(2):285, 1990.

[57] A. Saha, A. Subramanya, and H. Pirsiavash. Hidden trigger backdoor
attacks. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 11957–11965, 2020.

[58] T. Schick, H. Schmid, and H. Schütze. Automatically identifying words
that can serve as labels for few-shot text classification. In Proceedings
of the 28th International Conference on Computational Linguistics,
pages 5569–5578, Barcelona, Spain (Online), Dec. 2020. International
Committee on Computational Linguistics.

[59] T. Schick and H. Schütze. It’s not just size that matters: Small
language models are also few-shot learners. In Proceedings of the
2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages
2339–2352, Online, June 2021. Association for Computational Linguis-
tics.

[60] G. Shen, Y. Liu, G. Tao, Q. Xu, Z. Zhang, S. An, S. Ma, and X. Zhang.
Constrained optimization with dynamic bound-scaling for effective nlp
backdoor defense. In International Conference on Machine Learning,
pages 19879–19892. PMLR, 2022.

[61] L. Shen, S. Ji, X. Zhang, J. Li, J. Chen, J. Shi, C. Fang, J. Yin,
and T. Wang. Backdoor pre-trained models can transfer to all. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 3141–3158, 2021.

[62] T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace, and S. Singh.
AutoPrompt: Eliciting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP),
pages 4222–4235, Online, Nov. 2020. Association for Computational
Linguistics.

[63] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng,
and C. Potts. Recursive deep models for semantic compositionality
over a sentiment treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, pages 1631–1642,
Seattle, Washington, USA, Oct. 2013. Association for Computational
Linguistics.

[64] C. Song and A. Raghunathan. Information leakage in embedding
models. In Proceedings of the 2020 ACM SIGSAC conference on
computer and communications security, pages 377–390, 2020.

[65] K. Sun, R. Zhang, S. Mensah, Y. Mao, and X. Liu. Aspect-level sen-
timent analysis via convolution over dependency tree. In Proceedings
of the 2019 conference on empirical methods in natural language pro-
cessing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pages 5679–5688, 2019.

[66] D. Tang, X. Wang, H. Tang, and K. Zhang. Demon in the variant:
Statistical analysis of {DNNs} for robust backdoor contamination
detection. In 30th USENIX Security Symposium (USENIX Security 21),
pages 1541–1558, 2021.

[67] G. Tao, G. Shen, Y. Liu, S. An, Q. Xu, S. Ma, P. Li, and X. Zhang. Better
trigger inversion optimization in backdoor scanning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13368–13378, 2022.

[68] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang,
and T. B. Hashimoto. Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/stanford_alpaca, 2023.
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APPENDIX
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Fig. 10: Comparison of fine-tuning and prompt-tuning.

A. Attack Success Rate Vs. Dataset Size

We explore the impact of training data size on the attack
success rate of task-agnostic backdoors. We choose POR [61]
as the attack method, RoBERTa-base [43] as the victim model,
and AG New [82] as the downstream task. The experimental
results are shown in Figure 10a. We find that the attack success
rate on the fine-tuned model decreases gradually as the training
data set increases. Due to the effect of catastrophic forgetting,
the model gradually forgets about backdoor behavior as more
training data is available. But on the prompt-tuned model, the
attack success rate keeps at a high value, which indicates that
prompt-tuning is immune to catastrophic forgetting and more
vulnerable to task-agnostic backdoors.

We further use T-SNE dimensionality reduction to visualize
the feature outputs of the backdoored RoBERTa-base model
when the training dataset size is 6000. The result is shown
in Figure 10b. We can see that prompt-tuning features are quite
close to the PV, while fine-tuning features are far away from
the PV.

B. Loss Landscapes

Figure 11 shows the loss landscape of PICCOLO and
our LMSanitator. The center point corresponds to a correct
trigger. Visualizing method in [31] removes scale invariance in
network weights, so the x-axis and y-axis of different networks
are unified. A large basin indicates a higher probability of
convergence.

C. Observation Supports

To support our Observation I and Observation II, we
experiment on more models and datasets. Specifically, we
first use POR to construct poisoned models and then test
L2 distances on 6 text classification datasets. To support
Observation I, we test distances between inserting a trigger
and a clean word, as well as distances between inserting two
different clean words. The results are shown in Figure 12.
To support Observation II, we test distances between two
different texts before and after inserting the same trigger. The
results are shown in Figure 13.
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(a) PICCOLO on BadNet attack. (b) PICCOLO on POR attack. (c) LMSanitator on POR attack.

Fig. 11: Loss landscapes.
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Fig. 12: Supporting experiments for Observation I.
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Fig. 13: Supporting experiments for Observation II.
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