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Abstract
Inference attacks against Machine Learning (ML) models

allow adversaries to learn sensitive information about training
data, model parameters, etc. While researchers have studied,
in depth, several kinds of attacks, they have done so in iso-
lation. As a result, we lack a comprehensive picture of the
risks caused by the attacks, e.g., the different scenarios they
can be applied to, the common factors that influence their
performance, the relationship among them, or the effective-
ness of possible defenses. In this paper, we fill this gap by
presenting a first-of-its-kind holistic risk assessment of dif-
ferent inference attacks against machine learning models. We
concentrate on four attacks – namely, membership inference,
model inversion, attribute inference, and model stealing – and
establish a threat model taxonomy.

Our extensive experimental evaluation, run on five model
architectures and four image datasets, shows that the com-
plexity of the training dataset plays an important role with
respect to the attack’s performance, while the effectiveness of
model stealing and membership inference attacks are nega-
tively correlated. We also show that defenses like DP-SGD
and Knowledge Distillation can only mitigate some of the
inference attacks. Our analysis relies on a modular re-usable
software, ML-DOCTOR, which enables ML model owners to
assess the risks of deploying their models, and equally serves
as a benchmark tool for researchers and practitioners.1

1 Introduction
Over the last decade, research in Machine Learning (ML), and
in particular Deep Learning, has made tremendous progress.
However, the deployment and success of these technologies
might be affected by attacks against ML models that prompt
serious security and privacy risks. In particular, inference
attacks [12, 18, 35, 41, 45, 50, 51, 53, 57, 59, 65] allow ad-
versaries to infer information from a target ML model, e.g.,
about the training data, the model’s parameters, and so on.

*The first two authors made equal contributions.
1See https://github.com/liuyugeng/ML-Doctor.

In this paper, we focus on four representative attacks: mem-
bership inference [53], model inversion [12], attribute infer-
ence [35], and model stealing [59]. The first three target a
model’s training dataset, aiming to, respectively, determine
whether or not an exact data sample belongs to it, recover (part
of) it, or predict properties that are not related to the model’s
original task. Model stealing involves reconstructing the tar-
get model’s (non-public) parameters. Inference attacks can
lead to severe consequences, including violating individuals’
privacy, as ML models are often trained on sensitive data or
compromising the model owner’s intellectual property [10].

Overall, existing inference attacks have been studied under
different threat models and experimental settings, albeit in
isolation. This prompts the need for a holistic understanding
of the risks caused by these attacks, such as the scenarios
different inference attacks can be applied to, the common
factors that influence these attacks’ performance, and the re-
lations among the attacks, as well as the overall effectiveness
of defense mechanisms. To fill this gap, we perform a first-of-
its-kind holistic security and privacy risk assessment of ML
models, vis-à-vis four representative inference attacks.

Threat Model Taxonomy. Our work starts with a systemati-
cal categorization of the knowledge that an adversary might
have to launch the attacks, along two dimensions: 1) access
to a target model (white-box or black-box), 2) availability of
an auxiliary dataset (partial training dataset, shadow dataset,
or no dataset). We consider four types of state-of-the-art infer-
ence attacks and describe under which threat models they can
be applied. This provides us with a comprehensive spectrum
of the inference attack surface for ML models.

Experimental Evaluation. We perform an extensive mea-
surement study of the attacks, jointly, over five different
ML model architectures (AlexNet [27], ResNet18 [17],
VGG19 [54], Xception [8], and SimpleCNN) and four im-
age datasets (CelebA [34], Fashion-MNIST (FMNIST) [61],
STL10 [9], and UTKFace [66]). Our analysis aims to answer
three research questions: 1) What is the impact of dataset
complexity on different attacks? 2) What is the impact of

https://github.com/liuyugeng/ML-Doctor


overfitting on different attacks? 3) What is the relationship
among different attacks?

Main Findings. Our analysis shows that the complexity of
the target model’s training dataset plays a major role in the ac-
curacy of membership inference, model inversion, and model
stealing. In particular, membership inference is much more
effective on complex datasets, while the other two exhibit the
opposite trend. For instance, for membership inference (with
black-box access to the target model and a shadow dataset)
against ResNet18, there is a 68.4% increase when going from
a simple dataset (FMNIST) to a complex one (STL10).2 On
the other hand, model stealing achieves 0.524 agreement (the
standard metric for this attack) on ResNet18 trained on STL10
but a much higher 0.927 on FMNIST. This stems from ML
models being more prone to overfitting on complex datasets,
which leads to better membership inference, whereas when
an ML model is trained on a complex dataset, it is harder for
an adversary to obtain a dataset with similar complexity (by
querying the target model) to train their stolen model.

We also find that the performance of membership inference
and model stealing are negatively correlated (r = −0.821),
i.e., a target model with higher membership risks is less vul-
nerable to model stealing. This is due to the opposite effect
of overfitting on these two attacks. Moreover, access to a
partial training dataset does not significantly improve attack
performance for membership inference, attribute inference,
and model stealing. E.g., the accuracy for attribute inference
(on ResNet18/CelebA) is 0.719 with a partial training dataset
and 0.726 with a shadow dataset.

Defenses. We then evaluate two defense mechanisms, i.e.,
DP-SGD [1] and Knowledge Distillation (KD) [21], against
all the inference attacks. Empirical results show that DP-SGD
can mitigate membership inference attacks in general without
damaging target models’ utility significantly. Meanwhile, KD
also reduces membership inference risks, but generally, to a
lesser extent compared to DP-SGD. However, neither of them
is effective against other inference attacks. This highlights the
lack of a general, effective defense mechanism, and our work
sheds light as to what extent/why.

ML-DOCTOR. To support the comprehensive evaluation of
a wide range of inference attacks and defenses (current and
future), we introduce a framework called ML-DOCTOR. This
can be used by multiple entities and for multiple purposes.
For instance, model owners can use it to seamlessly and mean-
ingfully assess potential security and privacy risks before de-
ploying their model. Also, as we make source code publicly
available, researchers will be able to re-use ML-DOCTOR to
benchmark new inference attacks and defense mechanisms.
ML-DOCTOR follows a modular design, which easily sup-
ports the integration of additional inference attacks and de-
fenses, as well as plugging in datasets, models, etc.

2We refer to both sample complexity and class diversity (see Section 6.3).

2 Threat Modeling
In this work, we focus on image classification, one of the
most popular ML applications. In general, the goal of an ML
classifier is to map a data sample to a label/class. The input
to an ML model is a data sample, and the output is a vector
of probabilities, or posteriors, with each element representing
the likelihood of the sample belonging to a class.

We categorize the threat models for all the inference attacks
considered in this paper along two dimensions, i.e., 1) access
to the target model and 2) auxiliary dataset. In total, we
consider five different scenarios.

Access to the Target Model. We consider two access set-
tings: white-box and black-box. The former, denoted with
M W, means that an adversary has full information about the
target model, including its parameters and architecture. In
black-box attacks, denoted with M B, the adversary can only
access the target model in an API-like manner, e.g., they can
query the target model and get the model’s output. However,
most of the existing black-box literature [14, 53, 62] also
assumes that the adversary knows the target model’s architec-
ture which they use to build shadow models (see Section 3).

Overall, the white-box model captures scenarios where
the target model’s parameters are leaked, e.g., following a
data breach or through reverse engineering, e.g., from pre-
trained models deployed to mobile devices [21]. The black-
box model encapsulates API access akin to features provided
by Machine Learning as a Service (MLaaS) platforms.

Auxiliary Dataset. The adversary needs an auxiliary dataset
in order to train their attack model. We consider three scenar-
ios, in decreasing order of adversarial “strength”: 1) partial
training dataset (DP

aux), 2) shadow dataset (DS
aux), and 3) no

dataset (DN
aux). In the first scenario, the adversary obtains

parts of the actual training data from the target model (e.g.,
it is public knowledge), while in the last one, they have no
information at all. In between is the DS

aux setting, where the
adversary gets a “shadow” dataset from the same distribution
as the target model’s training data (see Section V-C in [53] for
a discussion on how to generate such data, using, e.g., through
model-based or statistics-based synthesis, or noisy real data).

Considered Settings. Overall, the two different types of
model access and the three types of auxiliary dataset avail-
ability lead to six threat models. In the rest of the paper, we
consider five of them: 〈M B,DP

aux〉, 〈M B,DS
aux〉, 〈M W,DP

aux〉,
〈M W,DS

aux〉, and 〈M W,DN
aux〉. We do not experiment with

black-box access and no auxiliary dataset, as this is unlikely
to yield successful attacks.

3 Inference Attacks
In this section, we present the four inference attacks mea-
sured in this paper. Specifically, we consider membership
inference (MemInf), model inversion (ModInv), attribute in-
ference (AttrInf), and model stealing (ModSteal). The first
three are designed to infer information about a target ML



Auxiliary Model Access
Dataset Black-Box (M B) White-Box (M W)

Partial (DP
aux) MemInf, ModSteal MemInf, AttrInf

Shadow (DS
aux) MemInf, ModSteal MemInf, AttrInf, ModInv

No (DN
aux) - ModInv

Table 1: Different attacks under different threat models.

model’s training data, while the last one aims to steal the
target model’s parameters.

Different attacks can be applied to different threat mod-
els; see Table 1. For each attack and each threat model, we
concentrate on one representative state-of-the-art method.

3.1 Membership Inference
Membership Inference (MemInf) [53] against ML models
involves an adversary aiming to determine whether or not a
target data sample was used to train a target ML model. More
formally, given a target data sample xtarget, (the access to) a
target model M , and an auxiliary dataset Daux, a membership
inference attack can be defined as:

MemInf : xtarget,M ,Daux→{member,non-member}
where M ∈ {M B,M W} and Daux ∈ {DP

aux,DS
aux}.

Membership inference has been extensively studied in liter-
ature [6, 7, 23, 29, 31, 37, 49, 51, 53]. Inferring membership
of a target sample prompts severe privacy threats; for instance,
if an ML model for drug dose prediction is trained using data
from patients with a certain disease, then inclusion in the train-
ing set inherently leaks the individuals’ health status. Overall,
MemInf is also often a signal that a target model is “leaky”
and can be a gateway to additional attacks [10].

In the following, we illustrate how to implement member-
ship inference (MemInf) under different threat models.
Black-Box/Shadow 〈MemInf,M B,DS

aux〉 [51]. We start with
the most common and difficult setting for the attack [51, 53],
whereby the adversary has black-box access (M B) to the
target model and a shadow auxiliary dataset (DS

aux).
The adversary first splits the shadow dataset into two parts

and uses one to train a shadow model on the same task. Next,
the adversary uses the entire shadow dataset to query the
shadow model. For each querying sample, the shadow model
returns its posteriors and the predicted label: if the sample is
part of the shadow model’s training set, the adversary labels
it as a member and as a non-member otherwise. With this la-
beled dataset, the adversary trains an attack model, which is a
binary membership classifier. Finally, to determine whether a
data sample is a member of the target model’s training dataset,
the sample is fed to the target model, and the posteriors and the
predicted label (transformed to a binary indicator on whether
the prediction is correct) are fed to the attack model.
Black-Box/Partial 〈MemInf,M B,DP

aux〉 [51]. If the adver-
sary has black-box access to the target model and a partial
training dataset, the attack method is very similar to that for
〈MemInf,M B,DS

aux〉. However, the adversary does not need
to train a shadow model; rather, they use the partial training

dataset as the ground truth for membership and directly train
their attack model.

White-Box/Shadow 〈MemInf,M W,DS
aux〉 [38]. Nasr et

al. [38] introduce an attack in the white-box setting with
either a shadow or a partial training dataset as the auxiliary
dataset.3 In the former, similar to 〈MemInf,M B,DS

aux〉, the
adversary uses DS

aux to train a shadow model to mimic the
behavior of the target model and to generate data to train their
attack model. As the adversary has white-box access to the tar-
get model, they can also exploit the target sample’s gradients
with respect to the model parameters, embeddings from dif-
ferent intermediate layers, classification loss, and prediction
posteriors (and label).

White-Box/Partial 〈MemInf,M W,DP
aux〉 [38]. The attack

methodology here is almost identical to the black-box counter-
part. The only difference is that the adversary can use the same
set of features as the attack model for 〈MemInf,M W,DS

aux〉.

3.2 Model Inversion
Model inversion attacks (ModInv) [12] aim to reconstruct data
samples from a target ML model, i.e., they allow an adversary
to directly learn information about the training dataset.

For instance, in a facial recognition system, a ModInv ad-
versary tries to learn the facial data of a victim whose data is
used to train the model. Model inversion requires the adver-
sary to have white-box access to the target model; this is due
to the fact that the attack needs to perform back-propagation
over the target model’s parameters (detailed below).

Formally, we define model inversion as:

ModInv : M W,Daux→{training samples}
where Daux ∈ {DN

aux,DS
aux}.

We consider two types of model inversion attacks: the one
proposed by Fredrikson et al. [12], which aims to reconstruct
a representative sample for each class of the target model,
and that by Zhang et al. [65], which aims to synthesize the
training dataset. These two attacks follow different threat
models, which we discuss next.

White-Box/No Auxiliary 〈ModInv,M W,DN
aux〉 [12]. The

method by Fredrikson et al. [12] assumes the adversary has
white-box access to the target model4 and does not need any
auxiliary dataset. For each class of the target model, the ad-
versary first creates a noise sample, feeds this sample to the
model, and gets the posteriors. The adversary then uses back-
propagation over the target model’s parameters to optimize
the input sample so that the corresponding posterior of the
class can exceed a pre-set threshold. Once the threshold is
reached, the optimized sample is the representative sample of
that class, i.e., the attack output.

3The attack by Nasr et al. [38] was originally designed for the partial training
dataset setting, but it can be adapted to the shadow dataset setting.

4Fredrikson et al. [12] also introduce a model inversion attack where the
adversary only has black-box access to the target model; however, its per-
formance is not as good and therefore we do not consider it.



White-Box/Shadow 〈ModInv,M W,DS
aux〉 [65]. The attack by

Zhang et al. [65] uses a shadow dataset to enhance the quality
of the reconstructed samples by training a generative adver-
sarial network (GAN) [15]. First, the adversary trains a GAN
with a shadow dataset. Next, the adversary optimizes the
inputs to the GAN’s generator, i.e., the noise, to find those
GAN-generated samples that can achieve high posteriors on
the target model. These samples are the attack’s final out-
puts. In other words, this attack performs optimization on
the inputs to the GAN instead of the samples to the target
model directly [12]. Since the GAN is capable of generat-
ing high-quality samples, the attack’s final outputs will be
more realistic. Moreover, due to the fact that GAN can gener-
ate multiple samples, this attack is able to generate multiple
samples for each class of the target model as well.

3.3 Attribute Inference
An ML model may learn extra information about the train-
ing data that is not related to its original task; e.g., a model
predicting age from profile photos can also learn to predict
race [35, 57]. Attribute inference (AttrInf) aims to exploit
such unintended information leakage.

State-of-the-art attacks usually rely on the embeddings
of a target sample (xtarget) obtained from the target model
to predict the sample’s target attributes. Thus, the adversary
is assumed to have white-box access to the target model.
Formally, attribute inference is defined as:

AttrInf : xtarget,M W,Daux→{target attributes}
where Daux ∈ {DP

aux,DS
aux} can either be a partial training

dataset or a shadow dataset.
White-Box/Shadow and Partial [35, 57]. Both attacks, i.e.,
〈AttrInf,M W,DS

aux〉 [35] and 〈AttrInf,M W,DP
aux〉 [57], follow

a similar attack methodology. The only difference lies in the
dataset used to train the attack model. In both cases, the adver-
sary is assumed to know the target attributes of the auxiliary
dataset. Then, they use the embeddings, and the target at-
tributes to train a classifier to mount the attack.

3.4 Model Stealing
The goal of model stealing attacks (ModSteal) [41, 59], aka
model extraction, is to extract the parameters from a target
model. Ideally, an adversary will be able to obtain a model
(the “stolen” model) with very similar performance as the
target model. More formally:

ModSteal : M B,Daux→M C

where M C is the stolen model and Daux ∈ {DP
aux,DS

aux}.
Model stealing prompts severe security risks. For instance,

as it is often difficult to train an advanced ML model (e.g., due
to the lack of data or computing resources), stealing a trained
model inherently constitutes intellectual property theft. Also,
as many other attacks, such as adversarial examples [46], re-
quire white-box access to the target ML model, model stealing
can be a stepping stone to perform these attacks.

Figure 1: Overview of ML-DOCTOR’s modules.

Black-Box/Partial and Shadow [59]. In this paper, we con-
centrate on the attacks proposed by Tramèr et al. [59], for
〈ModSteal,M B,DP

aux〉 and 〈ModSteal,M B,DS
aux〉. The adver-

sary is assumed to have knowledge of the target model’s
architecture, and both attacks follow a similar methodology.
Specifically, the adversary uses data samples from their auxil-
iary dataset (DP

aux or DS
aux) to query the target model and get

the corresponding posteriors. Then, they use them to train the
stolen model, with the posteriors as the ground truth.

4 ML-DOCTOR
In this section, we introduce ML-DOCTOR, a modular frame-
work geared to evaluate the four inference attacks, as well as
the two defenses (see Section 7), considered in this paper.

Prior work has proposed software tools to evaluate attacks
against ML models, such as adversarial examples [32, 44],
backdoor attacks [42], and membership inference [36]. To the
best of our knowledge, ML-DOCTOR is the first framework
that jointly considers different types of inference attacks.

Modules. In Figure 1, we report the four different modules
of ML-DOCTOR:

1. Data Processing. This module processes the datasets
to mount different attacks. It also involves data pre-
processing methods, e.g., normalization.

2. Attack. This module performs the actual inference at-
tacks. At the moment, it supports ten different attacks
belonging to four different attack types (see Section 3).

3. Defense. We currently support two representative mitiga-
tion techniques for inference attacks against ML models,
as discussed later in Section 7.

4. Evaluation. This module is used to evaluate the perfor-
mance of attacks and defenses.

The modular design of ML-DOCTOR allows to easily inte-
grate additional attacks and defense mechanisms, as well as
plugging in any dataset or model.

Using ML-DOCTOR. A user needs to input their target
model and its training dataset to use ML-DOCTOR. This is to
achieve a full-fledged privacy risk assessment. We envision
ML-DOCTOR to be used for the following purposes:

• As it supports a systematic taxonomy of different threat
models for inference attacks, ML-DOCTOR enables
model owners to obtain an overview of the threats their
model may face when deployed in the real world.



• ML-DOCTOR provides a holistic assessment of different
attacks, as well as the effectiveness of possible defenses.
To our best knowledge, this is the first tool to provide
such a comprehensive analysis of inference attacks.

• Researchers can re-use ML-DOCTOR as a benchmark
tool to experiment with new inference attacks and de-
fenses in the future. ML-DOCTOR’s data processing and
evaluation modules can be seamlessly re-used by other
attacks or defenses. Moreover, the maturity of the topic,
as demonstrated by the state of the art [12, 26, 51, 53, 56,
59, 65], suggests that new attacks against ML models
are very likely to fall into one of the threat models sum-
marized in our taxonomy (Section 2). This means that
new attacks/defenses can be easily implemented within
ML-DOCTOR’s attack and defense modules.

• Since ML-DOCTOR follows a modular design, the
communication between different modules is imple-
mented using an API-based approach. To include a
new attack/defense, one only needs to specify the at-
tack/defense models’ architecture in the attack/defense
module, which can be easily done with the support of
the current deep learning libraries. To further extend
ML-DOCTOR into different domains like text or audio,
users can re-implement the processing function and at-
tack methods in the corresponding modules, and reuse
other modules directly.

5 Experimental Settings
5.1 Experimental Protocol
We first select four benchmark datasets (see Section 5.2) and
five state-of-the-art ML models (see Section 5.3) to train a
total of 20 target models. These are used to evaluate different
attacks (see Section 3) and defenses (see Section 7). For
each dataset, we partition it into four parts (see Section 5.2),
including target training dataset, target testing dataset, shadow
training dataset, and shadow testing dataset, to comply with
the different threat models discussed in Section 2.

We then submit each target model and the corresponding
dataset partition to ML-DOCTOR, running the attacks (see
Section 5.4) and applying the defenses (see Section 7). Finally,
we use the evaluation module of ML-DOCTOR to summarize
the results and perform a comprehensive analysis to answer
the research questions listed in Section 6.1.

5.2 Datasets
For the sake of this paper, we experiment with four datasets:

• CelebA [34] contains 202,599 face images, each is asso-
ciated with 40 binary attributes. We select and combine
3 attributes out of 40, including HeavyMakeup, Mouth-
SlightlyOpen, and Smiling to form our target models’
classes/labels, leading to 8-class classification.

• FMNIST (Fashion-MNIST) [61] is also an image
dataset containing 70,000 gray-scale images equally dis-
tributed among 10 different classes, including T-shirt,

trouser, pullover, dress, coat, sandal, shirt, sneaker, bag,
and ankle boot.

• STL10 [9] is a 10-class image dataset, each contains
1,300 images. The classes include airplane, bird, car, cat,
deer, dog, horse, monkey, ship, and truck.

• UTKFace [66] has 23,000 face images associated with
age, gender, and race. We consider the images from the
largest four races (White, Black, Asian, and Indian) in
the dataset and use race as the label for the corresponding
target models. This leaves us with 22,012 images.

Note that all the samples in the datasets are re-sized to 32×32
pixels. This is common practice in ML and ensures that the
comparison among different datasets is fair. We randomly
split each dataset into four equal disjoint parts:

1. Target Training Dataset is used to train all the
target models and to evaluate the performance of all
membership inference attacks and model inversion
attacks. For attacks that require a partial training dataset
(DP

aux), i.e., 〈MemInf,M B,DP
aux〉, 〈MemInf,M W,DP

aux〉,
〈AttrInf,M W,DS

aux〉, 〈AttrInf,M W,DP
aux〉, and

〈ModSteal,M B,DP
aux〉, we randomly select 70%

samples from the target training dataset.
2. Target Testing Dataset is used to evaluate the perfor-

mance of the target model. It is also used to evaluate
the performance of all membership inference, attribute
inference, and model stealing attacks.

3. Shadow Training Dataset is used to train all the attack
models that require a shadow auxiliary dataset.

4. Shadow Testing Dataset is used to train two member-
ship inference attack models, i.e., 〈MemInf,M B,DS

aux〉
and 〈MemInf,M W,DS

aux〉, that require a shadow dataset
as the auxiliary dataset.

In a nutshell, all the datasets we choose in this paper are
benchmark datasets for evaluating inference attacks against
ML models [19, 22, 25, 33, 56]. These datasets have different
numbers of classes and cover a variety of objects, e.g., human
faces, transportation tools, and animals. Also, the images are
ranging from gray-scale to colored in different datasets. Note
that ML-DOCTOR is not bounded by certain types of datasets.
We plan to extend ML-DOCTOR to other security-related
datasets such as network scans, malware traces, etc.

5.3 Target Models
We focus on five model architectures, including AlexNet [27],
ResNet18 [17], VGG19 [54], Xception [8], and SimpleCNN
(containing 2 convolutional layers and 2 fully connected lay-
ers) for all the four datasets introduced above. In total, we
train 20 different target models.

For training, we set the mini-batch size to 64 and use cross-
entropy as the loss function. We use stochastic gradient de-
scent (SGD) as the optimizer with a weight decay of 5e-4 and
momentum of 0.9. Each target model is trained for 300 epochs.



The learning rate is 1e-2 before 50 epochs, 1e-3 from 50-100
epochs, and 1e-4 until the end. All target models’ training and
testing accuracy are shown in Table 2. Note that for shadow
models used in the membership inference attacks, we train
them following the same process as the target models.

5.4 Attack Models
Membership Inference. Recall that there are four different
scenarios for MemInf; we establish two types of attack mod-
els: one for the black-box and the other for the white-box
setting. For black-box, our attack model has two inputs; the
target sample’s ranked posteriors and a binary indicator on
whether the target sample being predicted correctly. Each
input is first fed into a different 2-layer MLP (Multilayer Per-
ceptron), then the two obtained embeddings are concatenated
together and fed into a 4-layer MLP. For white-box, we have
four inputs for this attack model, like the one used by Nasr
et al. [38], including the target sample’s ranked posteriors,
classification loss, gradients of the parameters of the target
model’s last layer, and one-hot encoding of its true label. Each
input is fed into a different neural network, and the resulted
embeddings are concatenated together as input to a 4-layer
MLP. We use ReLU as the activation function for the attack
models. The mini-batch size is set to 64, and cross-entropy is
the loss function. We use Adam as the optimizer, with learn-
ing rate of 1e-5. The attack model is trained for 50 epochs.
We adopt accuracy, F1 score, and AUC (area under the ROC
curve) score as the evaluation metrics.
Model Inversion. For 〈ModInv,M W,DN

aux〉, following the at-
tack settings in [12], we set the threshold to 0.999, learning
rate to 1e-2, maximum iteration to 3,000, and early stop crite-
ria to 100. This attack can only generate one representative
sample for each class of the target model. To evaluate the
quality of the reconstructed sample, we first obtain an average
sample from all samples of each target class, then calculate
the mean squared error (MSE) between this average sample
and the reconstructed sample. Finally, we use the average of
the MSE values for all target classes as the evaluation met-
ric. Note that smaller MSE within the same dataset indicates
better attack performance. However, for different datasets,
different MSE can be caused by the different normalization
effects. For example, FMNIST has the highest MSE; this is
due to the characteristic of FMNIST: most of the pixels are
normalized to -1 or 1.

For 〈ModInv,M W,DS
aux〉 [65], we first use the shadow train-

ing dataset to train a DCGAN [48] with the generator’s noise
dimension setting to 100. For the attack, we set the learning
rate to 1e-3, momentum to 0.9, loss ratio λ to 100, iteration
round to 1,500, and clip range to 1. To evaluate the effective-
ness of this attack, we use the same approach by Zhang et
al. [65], i.e., we train an evaluation classifier on the identical
task of the target model and use this evaluation classifier to
check whether the reconstructed samples can be recognized
correctly. We use accuracy and macro-F1 score of this evalu-

CelebA FMNIST STL10 UTKFace

AlexNet 1.000 / 0.680 1.000 / 0.884 1.000 / 0.522 1.000 / 0.792
ResNet18 1.000 / 0.742 1.000 / 0.909 1.000 / 0.524 1.000 / 0.852
VGG19 1.000 / 0.734 1.000 / 0.905 1.000 / 0.587 1.000 / 0.834
Xception 1.000 / 0.735 1.000 / 0.916 1.000 / 0.574 1.000 / 0.846
SimpleCNN 1.000 / 0.707 1.000 / 0.903 1.000 / 0.517 1.000 / 0.818

Table 2: Performance of target models, namely, training/testing ac-
curacy for each setting.

ation classifier on reconstructed samples as the performance
metrics.

Attribute Inference. We only use two datasets, namely,
CelebA and UTKFace, to evaluate this attack as both of them
have extra attributes that can be used as the target attributes.
For the former, we utilize Male/Female and Young/Old as
the target attribute, resulting in a combination of four target
attribute values. For the latter, we choose Male/Female as the
target attribute.

Our attack model is a 2-layer MLP; its input is the target
sample’s embeddings from the second-to-last layer of the
target model. We use cross-entropy as the loss function and
Adam as the optimizer with learning rate of 1e-3. The attack
model is trained for 50 epochs. For the evaluation metrics, we
use accuracy and F1 score (macro-F1 score for CelebA as
the attack has four target attributes).

Model Stealing. We evaluate the model stealing attack over
all the 20 target models. For the stolen model, we use the
same architecture as the target model [59]. Each stolen model
is trained using the MSE loss and SGD as the optimizer (mo-
mentum 0.9 and learning rate 1e-2) for 50 epochs. Accuracy
and agreement are used to assess the success of the attack,
where agreement represents the proportion of samples in the
target testing dataset on which the target and the stolen models
make the same prediction.

6 Experimental Evaluation
In this section, we build on ML-DOCTOR to provide a holistic
assessment of inference attacks against ML models. Experi-
ments are performed on an NVIDIA DGX-A100 server with
Ubuntu 18.04 operating system. We run all the experiments
10 times, reporting mean and standard deviation values.

6.1 Research Questions
We start by assessing the overall performance of the four
attacks. We then analyze the impact of dataset and overfitting
on the attack performance, as well as the relationship among
different attacks. Concretely, we aim to answer the following
key research questions:

• RQ1: What is the impact of dataset complexity on dif-
ferent attacks?

• RQ2: What is the impact of overfitting on different at-
tacks?

• RQ3: What is the relationship among different attacks?
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Figure 2: Accuracy of membership inference attacks (MemInf) under different threat models, datasets, and target model architectures.
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Figure 3: MSE (〈ModInv,M W,DN
aux〉) and accuracy (〈ModInv,M W,DS

aux〉) of model inversion attacks (ModInv) under different threat models,
datasets, and target model architectures.
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Figure 4: Accuracy of attribute inference attacks (AttrInf) under different threat models, datasets, and target model architectures.
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Figure 5: Agreement of model stealing attacks (ModSteal) under different threat models, datasets, and target model architectures.

6.2 Attack Performance
Membership Inference. In Figure 2, we report the accuracy
of MemInf. We observe that the attack achieves high accuracy
on CelebA, STL10, and UTKFace. For instance, the attack
accuracy of 〈MemInf,M W,DS

aux〉 on ResNet18 trained on the
STL10 dataset is 0.911. On the other hand, the performance

on FMNIST is not strong, as models trained on FMNIST
generalize well on non-member data samples—in other words,
there is less overfitting [53] (see Section 6.4). We also report
the F1 score and AUC score in Appendix A (Figure 11 and
Figure 12), and the corresponding ROC curves are depicted in
Appendix A (Figure 13, Figure 14, Figure 15, and Figure 16).
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Figure 7: The relation between overfitting level (on target models) and attack performance. For MemInf, ModInv, and AttrInf, we use
accuracy, for ModSteal, agreement.

An adversary with white-box access to the target model
generally achieves better performance than the one with black-
box access. For instance, the accuracy of 〈MemInf,M W,DS

aux〉
is higher than that of 〈MemInf,M B,DS

aux〉, except for Xcep-
tion on STL10 and FMNIST and VGG19 on UTKFace
(see Figure 2). A similar observation can be drawn from
〈MemInf,M W,DP

aux〉 and 〈MemInf,M B,DP
aux〉; this is ex-

pected as the adversary can exploit more information in the
white-box setting. In particular, we find that the classification
loss possesses the strongest signal among others for the at-
tack [38]. Meanwhile, partial training dataset also leads to
better membership inference performance than the shadow
dataset; however, the effect is less pronounced.
Model Inversion. Next, we measure the performance of
model inversion (see Figure 3). As discussed in Sec-
tion 5.4, we use different metrics to evaluate these two at-
tacks, i.e., MSE for 〈ModInv,M W,DN

aux〉 and accuracy for
〈ModInv,M W,DS

aux〉, due to their different design. Thus, we
cannot directly compare them. Rather, we evaluate their at-
tack performance qualitatively (see Figure 10 in Appendix A
for two examples) and discover that the images generated
by 〈ModInv,M W,DS

aux〉 are more realistic than those by
〈ModInv,M W,DN

aux〉. This is due to the capability of GAN for
generating high-quality samples. For 〈ModInv,M W,DS

aux〉, we
also use macro-F1 as the metric; see Figure 17 in Appendix A.
Attribute Inference. The accuracy of the attribute infer-
ence attacks is shown in Figure 4. We also report macro-F1
score for CelebA and F1 score for UTKFace in Figure 18
(see Appendix A). The corresponding ROC curves are re-
ported in Figure 19 (see Appendix A). In general, the at-

tacks work quite well. For instance, both 〈AttrInf,M W,DS
aux〉

and 〈AttrInf,M W,DP
aux〉 reach around 0.800 accuracy for

ResNet18 trained on UTKFace. The F1 scores with respect
to these two models are both about 0.779. We also notice that
using a partial training dataset does not provide the adversary
with many advantages compared to using a shadow dataset.
In some cases, partial training dataset even yields worse per-
formance, as in the case of VGG19 trained on CelebA.

Model Stealing. We report the agreement (Figure 5) and
accuracy (Figure 20 in Appendix A) to evaluate model steal-
ing attacks. Overall, ModSteal has strong performance. For
instance, 〈ModSteal,M B,DS

aux〉 for ResNet18 trained on FM-
NIST achieves an agreement of 0.927. Similar to attribute
inference, we observe that using a partial training dataset as
the auxiliary dataset has a lower performance than the shadow
dataset for model stealing. One reason might be that using a
partial training dataset querying the target model results in
more confident posteriors (low entropy), which contain less
information for the adversary to exploit.

6.3 The Role of the Datasets
To answer the first research question, we plot the relationship
between dataset complexity and attack performance in Fig-
ure 6. (The x-axis represents the datasets and the y-axis shows
the attack performance, and each node corresponds to one
attack against one target model). Due to space limitations, we
only show one plot for one threat model for each attack.

Dataset Complexity. As mentioned before, all the samples
in the four datasets are re-sized to 32×32 pixels. FMNIST
is the simplest dataset as it only contains gray-scale images,
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followed by UTKFace, which consists of (full-color) human
faces, and CelebA, which has 10 times more images than
UTKFace. The most complex dataset is STL10, as it contains
images of 10 diverse classes, ranging from cat to ship.

Results. Overall, the complexity of the dataset does have a
significant effect on MemInf and ModSteal. More precisely,
more complex datasets lead to better membership inference
but worse model stealing performance. Ostensibly, this is
due to the fact that a complex dataset is harder for a model
to generalize on, and thus more prone to overfitting, which
results in better membership inference attack [53], whereas
when a model is trained on a complex dataset, it is harder for
an adversary to obtain a dataset with similar complexity (by
querying the target model) to train their stolen model.

We also observe that model inversion is less effective on
STL10 than on UTKFace and CelebA, whereas there is no
strong influence of dataset complexity on attribute inference;
this might be due to the different target classes of our attacks
on these two datasets (see Section 5.4). Note that we also
investigate the complexity of the target model structure on
the attack performance but do not observe any clear relation.

6.4 The Effect of Overfitting
To answer the second research question, we analyze the ef-
fect of target models’ overfitting on inference attacks’ perfor-
mance. Concretely, we adopt two metrics to quantify over-
fitting in each target model: 1) the difference between the
training accuracy and the testing accuracy of the target model,
referred to as the overfitting level, and 2) the number of epochs
used to train the target model [51].

Overfitting Level. The relation between overfitting level and
attack performance is shown in Figure 7. First, we observe
that different datasets have different overfitting levels, and this
correlates well with the dataset complexity (see Section 6.3).
Specifically, the largest (smallest) overfitting level happens
on the most (least) complex dataset in our experiments, i.e.,
STL10 (FMNIST).

Overall, overfitting does have a significant impact on
MemInf (〈MemInf,M W,DS

aux〉). That is, a higher overfitting
level leads to better membership inference. This is in line with

previous analysis [51, 53], and is expected, as an overfitted
model provides more confident predictions on its member
samples (reflected on the posteriors) than on non-member
samples, which can be exploited by the attack model to effec-
tively differentiate them.

Meanwhile, model stealing displays a completely opposite
trend, i.e., it is more difficult to steal a highly overfitted model.
This can be explained by the fact that an overfitted model
memorizes its training dataset to a large extent, and an adver-
sary usually does not have the ability to get the exact training
dataset; thus, the stolen model is likely to be dissimilar to
the target model. Also, model inversion tends to have better
performance on less overfitted models, except for FMNIST.
We believe this is due to the quality of the GAN employed in
the attack. For attribute inference, we do not observe a clear
relationship between attack performance and overfitting level.

Number of Epochs. The relation between the number of
epochs and attack performance (on UTKFace and CelebA) is
shown in Figure 8. First, we find that all attacks’ performance
becomes steady after 100 epochs; this is reasonable since 100
epochs are usually enough to train good target models, and
further training does not cause an obvious effect on overfitting.
Second, the performance of membership inference increases
from 10 epochs until 100 epochs, while model stealing shows
the opposite trend. This observation echoes our previous ar-
gument that a highly overfitted model is easier to be attacked
by membership inference but harder to be stolen. For model
inversion and attribute inference, the attack performance only
has slight fluctuations with a different number of epochs.

6.5 Relation Among Different Attacks
Next, we analyze the relationship between different at-
tacks under the same threat model, which corresponds
to our third research question. In total, we consider all
the six pairs of attacks (as depicted in Table 1) includ-
ing MemInf and ModSteal under 〈M B,DS

aux〉, MemInf
and ModSteal under 〈M B,DP

aux〉, MemInf and AttrInf un-
der 〈M W,DS

aux〉, MemInf and AttrInf under 〈M W,DP
aux〉,

MemInf and ModInv under 〈M W,DS
aux〉, and AttrInf and

ModInv under 〈M W,DS
aux〉.
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Figure 9: The relation between different attacks under the same threat model. For MemInf, ModInv, and AttrInf, we use accuracy, for
ModSteal, agreement.

Figure 9 shows that there is a strong negative corre-
lation between membership inference and model stealing
(〈M B,DS

aux〉) with respect to their accuracy (r = −0.821).
Specifically, worse membership inference corresponds to bet-
ter model stealing. This follows from the discussion around
overfitting (Section 6.4). The correlation with respect to other
evaluation metrics is reported in Figure 21 in Appendix A.
We also observe a strong negative correlation between mem-
bership inference and model inversion, except for model in-
version performing worse on FMNIST than on CelebA and
UTKFace. We speculate this is due to the capability of the DC-
GAN used in the model inversion attack. FMNIST contains
gray-scale images, while CelebA and UTKFace are both face
datasets. DCGAN, in general, is more effective in generating
human faces [48], which results in model inversion’s better
performance on CelebA and UTKFace than on FMNIST. In
the future, we plan to extend the model inversion attack by
using more advanced GANs, such as StyleGAN2 [24].

On the other hand, there does not seem to be any clear
relation between attribute inference and model inversion, as
well as between membership inference and attribute inference.

7 Defenses
We now evaluate two representative defense mechanisms,
namely Differential Privacy (DP) and Knowledge Distillation
(KD), and investigate whether or not, and how effectively, they
can be used to mitigate these attacks. To the best of our knowl-
edge, there is no one general defense against all the inference
attacks. The reason we choose these two mechanisms is that
they have been proposed to defend more diverse types of at-
tacks compared to others. DP is used to defend several attacks,
e.g., adversarial examples [28], membership inference [56],
model stealing [26], and model inversion [65]. Shejwalkar and
Houmansadr [52] use KD to defend some inference attacks
like membership inference. Papernot et al. [47] also introduce
KD to reduce the effectiveness of adversarial examples on
ML models. Other common techniques cannot defend against
all attacks simultaneously. For instance, regularization can
reduce the performance of membership inference, but regular-
ization also leads to better model stealing and model inversion
as shown in Section 6.4.

7.1 Techniques
7.1.1 Differential Privacy (DP)
Differential Privacy (DP) [11, 30] guarantees that any single
data sample in a dataset has a limited impact on the output.

Definition 1 ((ε,δ)-DP). A randomization algorithm A sat-
isfies (ε,δ)-differential privacy, with ε > 0 and 0≤ δ < 1, if
and only if for any two neighboring datasets D and D′ that
differ in one record, we have:

∀T ⊆Range(A) : Pr [A(D) ∈ T ]≤ eεPr
[
A(D′) ∈ T

]
+δ,

where Range(A) denotes the set of all possible outputs of the
algorithm A , δ can be interpreted as the probability that the
mechanism fails to satisfy ε-DP.

Gaussian Mechanism. There are several approaches to de-
sign mechanisms satisfying (ε,δ)-differential privacy. The
Gaussian mechanism is arguably the most widely used one
in the ML context. Essentially, it computes a function f on
dataset D by adding random (Gaussian) noise to f (D). The
magnitude of the noise depends on ∆ f , i.e., the global sensitiv-
ity of f (also referred to as the `2 sensitivity). More formally,
we define the A mechanism as

A(D) = f (D)+N
(
0,∆2

f σ
2I
)

where ∆ f = max
(D,D′):D'D′

|| f (D)− f (D′)||2.

Here, N (0,∆2
f σ2I) denotes a multi-dimensional random

variable sampled from the normal distribution with mean 0

and standard deviation ∆ f σ, and σ =
√

2ln 1.25
δ
/ε.

DP-SGD. We experiment with Differentially-Private Stochas-
tic Gradient Descent (DP-SGD) [1], the most representative
DP mechanism for protecting machine learning models. In
general, DP-SGD adds Gaussian noise to gradient g during the
target ML model’s training process, i.e., g̃= g+N

(
0,∆2

gσ2I
)
.

Note that there is no prior knowledge to determine the influ-
ence of a single training sample on the gradient g; thus, the
sensitivity of g cannot be directly computed. To address this
problem, DP-SGD proposes to bound the `2 norm of the gra-
dient to C by clipping g to g/max{1, ||g||2/C}. This clipping
ensures that if ||g||2 ≤ C, g is preserved; otherwise, it gets
scaled down to be norm of C. As such, the sensitivity of g is
bounded by C.



CelebA FMNIST STL10 UTKFace
Original ε1=5.139 ε2=6.574 Original ε1=8.408 ε2=9.355 Original ε1=8.834 ε2=9.604 Original ε1=9.578 ε2=7.762

〈MemInf,M B,DS
aux〉 0.645±0.005 0.500±0.000 0.500±0.000 0.559±0.004 0.500±0.000 0.500±0.000 0.774±0.010 0.501±0.005 0.500±0.000 0.626±0.008 0.500±0.001 0.499±0.001

〈MemInf,M B,DP
aux〉 0.649±0.009 0.500±0.000 0.500±0.000 0.560±0.003 0.498±0.003 0.500±0.000 0.744±0.028 0.502±0.010 0.498±0.006 0.621±0.004 0.499±0.007 0.500±0.000

〈MemInf,M W,DP
aux〉 0.717±0.004 0.500±0.000 0.501±0.001 0.580±0.002 0.505±0.001 0.500±0.000 0.826±0.008 0.511±0.005 0.541±0.002 0.650±0.009 0.504±0.000 0.505±0.006

〈MemInf,M W,DS
aux〉 0.721±0.002 0.500±0.000 0.500±0.000 0.580±0.002 0.500±0.000 0.500±0.000 0.823±0.005 0.538±0.002 0.543±0.006 0.660±0.003 0.504±0.000 0.501±0.001

〈ModInv,M W,DS
aux〉 0.693±0.024 0.640±0.053 0.686±0.053 0.586±0.022 0.520±0.034 0.570±0.032 0.353±0.008 0.209±0.032 0.227±0.038 0.912±0.011 0.814±0.020 0.744±0.041

〈ModInv,M W,DN
aux〉 0.058±0.000 0.059±0.000 0.059±0.000 0.991±0.000 0.993±0.000 0.993±0.000 0.201±0.000 0.201±0.000 0.201±0.000 0.070±0.000 0.071±0.000 0.070±0.000

〈AttrInf,M W,DS
aux〉 0.764±0.000 0.732±0.001 0.701±0.002 - - - - - - 0.792±0.002 0.782±0.006 0.724±0.022

〈AttrInf,M W,DP
aux〉 0.773±0.000 0.732±0.004 0.707±0.002 - - - - - - 0.809±0.001 0.768±0.000 0.740±0.001

〈ModSteal,M B,DS
aux〉 0.803±0.001 0.903±0.001 0.896±0.001 0.932±0.001 0.928±0.001 0.925±0.001 0.663±0.005 0.501±0.010 0.483±0.007 0.907±0.005 0.845±0.005 0.795±0.006

〈ModSteal,M B,DP
aux〉 0.754±0.002 0.903±0.001 0.895±0.001 0.906±0.004 0.927±0.001 0.924±0.001 0.525±0.006 0.477±0.006 0.466±0.006 0.851±0.006 0.838±0.007 0.785±0.004

Table 3: Attack performance under different threat models and datasets, on SimpleCNN, using DP-SGD. For MemInf, ModInv (〈M W,DS
aux〉),

and AttrInf, we use accuracy, for ModInv (〈M W,DN
aux〉), MSE, and for ModSteal, agreement.

Composition. Note that we need to calculate the gradient
multiple times when training an ML model. Each calculation
requires access to the training data and thus consumes a por-
tion of the privacy budget. We use the notion of zCDP [3] to
calculate the total privacy budget consumption. The general
idea of zCDP is to connect (ε,δ)-DP to Rényi divergence and
use the properties of Rényi divergence to achieve tighter com-
position property. That is, for a given privacy budget (ε,δ)
and the number of gradient calculation T , zCDP adds less
Gaussian noise to the gradient than the naïve composition. For
instance, when ε=1, δ=1e-5, T =1,000, and C=1, the standard
deviation of Gaussian noise calculated by zCDP is 155, while
that of naïve composition is 1,414.

7.1.2 Knowledge Distillation (KD)
Another defense mechanism we consider is Knowledge Dis-
tillation (KD) [21, 52]. Generally, KD is proposed to transfer
the generalization ability (knowledge) from a larger model
(original model) to a smaller model (distilled model) without
utility degradation. Once the distilled model is trained, it can
replace the original model in many scenarios as it is more
computationally efficient and less dependent on resources.

A simple way to transfer the knowledge from the original
model to the distilled model is to use the posteriors generated
by the original model as a “soft label” to guide the training
of the distilled model. Compared to the original labels (one-
hot), the posteriors have higher entropy. It contains more
information for each training sample and has less variance
for the gradient among different training samples, which can
speed up the training process of the distilled model [21]. To
train the distilled model, we combine two loss terms, i.e., the
soft target loss and the hard target loss. The first one is the
Kullback-Leibler divergence loss between the output of the
original model and the distilled model. The second one is the
cross-entropy loss between the original label and the output
of the distilled model. As suggested by Hinton et al. [21], we
use a higher temperature value in the softmax function of the
first loss for better performance.

KD transfers knowledge from the original model to a dis-
tilled model. Compared to the original model, the distilled
model has a lower capacity. Intuitively, it should remember
less information of the original model with respect to both

its training dataset and parameters. Thus, we believe KD can
serve as a general defense for inference attacks. Papernot
et al. [47] show that KD can reduce the risks of adversarial
examples against machine learning models. Shejwalkar and
Houmansadr [52] also show that KD can mitigate membership
inference attacks. Here, we take a broader view investigat-
ing whether or not KD is effective to defend against other
inference attacks.

7.2 Experimental Setup
Both DP-SGD and KD are applied in the training process
of target models. Due to space limitations, we only apply
DP-SGD to SimpleCNN and KD to VGG19.
DP-SGD Target Model. We use the Opacus library5 to im-
plement DP-SGD. This library allows a user to configure the
clip bound C, the standard deviation of the Gaussian noise σ,
and the failure probability δ, then the library can automati-
cally calculate the total privacy budget ε using zCDP. A larger
number of epochs implies higher ε. Our target model is trained
for 300 epochs; thus, we fix δ=1e-5 and choose two sets of C
and σ such that ε is smaller than 10. We list these settings in
the second row of Table 3. All the other hyperparameters are
the same as presented in Section 5.3.
Distillation Target Model. We distill the model knowledge
of VGG19 (16 convolution layers and 3 fully connected lay-
ers) to a smaller model, i.e., VGG11 [54] (8 convolution layers
and 3 fully connected layers). We use Kullback-Leibler diver-
gence as the soft target loss with the temperature setting to
20. For the hard target loss, we use cross-entropy. We set α to
0.7 for the ratio of the soft target loss. Other settings are the
same as the target model’s training phase in Section 5.3.

7.3 Results
DP-SGD. Table 3 reports the performance of inference
attacks against target models protected by DP-SGD. For
MemInf, DP-SGD is effective in almost all cases. For in-
stance, for 〈MemInf,M W,DS

aux〉 on the CelebA dataset, the
accuracy drops from 0.721 to 0.500, which is a random guess.
This is expected as DP, by definition, can mitigate member-
ship inference. For ModInv and AttrInf, DP-SGD can only
5https://github.com/pytorch/opacus

https://github.com/pytorch/opacus


CelebA FMNIST STL10 UTKFace
Original Distilled Original Distilled Original Distilled Original Distilled

〈MemInf,M B,DS
aux〉 0.595 ± 0.038 0.500 ± 0.000 0.520 ± 0.004 0.515 ± 0.005 0.682 ± 0.053 0.616 ± 0.069 0.642 ± 0.008 0.581 ± 0.024

〈MemInf,M B,DP
aux〉 0.637 ± 0.012 0.572 ± 0.042 0.530 ± 0.009 0.538 ± 0.008 0.786 ± 0.008 0.703 ± 0.005 0.657 ± 0.009 0.596 ± 0.001

〈MemInf,M W,DP
aux〉 0.698 ± 0.005 0.691 ± 0.002 0.555 ± 0.013 0.568 ± 0.001 0.806 ± 0.015 0.773 ± 0.006 0.677 ± 0.000 0.611 ± 0.002

〈MemInf,M W,DS
aux〉 0.638 ± 0.038 0.559 ± 0.059 0.539 ± 0.014 0.530 ± 0.004 0.799 ± 0.050 0.677 ± 0.073 0.642 ± 0.017 0.620 ± 0.024

〈ModInv,M W,DS
aux〉 0.648 ± 0.038 0.650 ± 0.030 0.573 ± 0.021 0.447 ± 0.037 0.203 ± 0.020 0.244 ± 0.031 0.824 ± 0.021 0.815 ± 0.036

〈ModInv,M W,DN
aux〉 0.058 ± 0.000 0.058 ± 0.000 0.993 ± 0.000 0.992 ± 0.000 0.201 ± 0.000 0.201 ± 0.000 0.070 ± 0.000 0.070 ± 0.000

〈AttrInf,M W,DS
aux〉 0.665 ± 0.005 0.669 ± 0.019 - - - - 0.540 ± 0.006 0.554 ± 0.030

〈AttrInf,M W,DP
aux〉 0.610 ± 0.018 0.660 ± 0.004 - - - - 0.549 ± 0.001 0.584 ± 0.004

〈ModSteal,M B,DS
aux〉 0.820 ± 0.001 0.788 ± 0.003 0.932 ± 0.000 0.940 ± 0.001 0.589 ± 0.006 0.618 ± 0.003 0.927 ± 0.007 0.918 ± 0.013

〈ModSteal,M B,DP
aux〉 0.756 ± 0.005 0.741 ± 0.003 0.902 ± 0.001 0.914 ± 0.001 0.478 ± 0.006 0.510 ± 0.003 0.826 ± 0.010 0.836 ± 0.018

Table 4: Attack performance under different threat models and datasets, on VGG19, using Knowledge Distillation (KD). For MemInf, ModInv
(〈M W,DS

aux〉), and AttrInf, we use accuracy, for ModInv (〈M W,DN
aux〉), MSE, and for ModSteal, agreement.

Experiment Model CelebA FMNIST STL10 UTKFace

DP-SGD (ε1) SimpleCNN 0.654 0.830 0.347 0.698
DP-SGD (ε2) SimpleCNN 0.675 0.836 0.313 0.680
KD VGG19 0.713 0.919 0.588 0.823

No Defense SimpleCNN 0.706 0.903 0.516 0.818
No Defense VGG19 0.733 0.905 0.587 0.834

Table 5: Accuracy of target models protected by DP-SGD and KD.

reduce the attack accuracy to a small extent. However, the
MSE loss for 〈ModInv,M W,DN

aux〉 remains stable.
DP-SGD indeed reduces the risks of model stealing on

STL10 and UTKFace under different threat models. For in-
stance, for 〈ModSteal,M B,DS

aux〉 on STL10, the agreement
for the two different εs are 0.501 and 0.483, while the agree-
ment for the original model is 0.663. Meanwhile, DP-SGD
does not influence model stealing on FMNIST. Interestingly,
it actually enhances the performance of model stealing on
CelebA. Overall, DP-SGD can effectively defend against
membership inference attacks, but not the others.

KD. In Table 4, we report the effectiveness of KD as a gen-
eral defense mechanism. We do not observe any significant
decrease in attack performance for model inversion, attribute
inference, and model stealing on original vs. the distilled mod-
els. Specifically, the attack performance difference, in most
cases, is less than 5%. In certain cases, KD is effective against
membership inference, but to a lesser extent compared to DP-
SGD. For instance, the accuracy of 〈MemInf,M B,DS

aux〉 on
the STL10 dataset drops from 0.682 to 0.616.

Utility and Defense Effectiveness Trade-off. We observe
that both DP-SGD and KD can defend some of the infer-
ence attacks. However, it comes at the cost of utility dropping
(see Table 5). Compared to DP-SGD, KD preserves the target
model’s utility better. For instance, on the STL10 dataset, the
target testing accuracy drops from 0.818 to 0.698 (ε1) and
0.680 (ε2) for DP-SGD, while the corresponding performance
only drops from 0.834 to 0.823 for KD. Meanwhile, DP-SGD
has better defense performance than KD. In particular, for
〈MemInf,M W,DS

aux〉 on the UTKFace dataset, SimpleCNN
defended by DP-SGD reduces the attack accuracy signifi-
cantly from 0.660 to 0.504 (ε1) and 0.501 (ε2), respectively.

The VGG19 model defended by KD only reduces the attack
accuracy to a smaller extends from 0.642 to 0.621. Also, as
discussed above, both DP-SGD and KD are not general de-
fenses against all the inference attacks, which inspires future
research to better defend different inference attacks while
maintaining the target model’s utility.

8 Related Work
We now review relevant related work on inference attacks and
defenses, as well as software dedicated to evaluating them.

Membership Inference Attacks. Shokri et al. [53] propose
the first membership inference attack against black-box ML
models: they train multiple shadow models to simulate the
target model and use multiple attack models to conduct the
inference. Salem et al. [51] later relax several key assump-
tions from [53]; namely, using multiple shadow models, the
knowledge of the target model structure, and having a dataset
from the same distribution as the target model’s. Yeom et
al. [63] assume that the adversary knows the target model’s
training dataset’s distribution and size, and they collude with
the training algorithm. Both [51] and [63] are close in per-
formance to Shokri et al.’s attacks [53]. In this paper, we
implement the attack proposed by Salem et al. [51], i.e., one
shadow model, one attack model, and a shadow dataset. More
recently, researchers have studied membership inference in
other settings, including natural language processing [5, 56],
generative models [6, 16, 20], recommender systems [64], and
federated learning [35, 38]. Also, Song and Mittal have per-
formed a systematic evaluation on membership inference [58].
Previous work [51, 53] also shows that overfitting is the ma-
jor factor causing membership inference. To the best of our
knowledge, however, no one has investigated other factors
studied in our paper, such as the influence of dataset complex-
ity or the relationship among different inference attacks.

Attribute Inference. Prior research [2, 14] has studied macro-
level attribute inference attacks against ML models, whereby
the adversary aims to infer some general properties of the
training dataset. Melis et al. [35] propose the first sample-level
attribute inference attack against federated machine learning
systems. Song and Shmatikov [57] reveal that the risks of



attribute inference are caused by the intrinsic overlearning
characteristics of machine learning models.

Model Inversion. Model inversion is first proposed by
Fredrikson et al. [13] in the setting of drug dose classification.
Later, they extend model inversion to general ML settings
relying on back-propagation over a target ML model’s param-
eters [12]. More recently, Zhang et al. [65] develop a more
advanced attack aiming to synthesize the training dataset re-
lying on GANs. Finally, Carlini et al. [4] show that model
inversion can be effectively performed against natural lan-
guage processing models as well.

Model Stealing. Tramèr et al. [59] propose the first model
stealing attack against black-box machine learning API.
Orekondy et al. [41] develop a reinforcement learning-based
framework to optimize both query time and effectiveness.
Also, Wang and Gong [60] and Oh et al. [40] show that hy-
perparameters of a target model can be inferred as well.

Defense Mechanisms. A few defense mechanisms have been
proposed to mitigate membership inference attacks [23, 37,
51]. However, these defenses are specifically designed for
membership inference and cannot mitigate other inference
attacks. For instance, Salem et al. [51] propose to reduce
overfitting of the target model as a defense; however, as we
show in our analysis (see Section 6.4), reducing overfitting
will improve the performance of model stealing.

Differential Privacy (DP) [11, 30] guarantees that any sin-
gle data sample in a dataset has a limited impact on the output
of an algorithm. As such, it is an effective defense mechanism
against inference attacks. Abadi et al. [1] introduce DP-SGD,
which adds Gaussian noise to the gradients of the target model
during the training process. Another DP method for protect-
ing the privacy of ML models is PATE [43]: a set of teacher
models is trained on a private dataset, which is used to label
a public dataset in a differentially private manner. The final
public dataset is then used to train a student model. Recently,
Nasr et al. [39] instantiate a number of attacks against ML to
evaluate the effectiveness of DP defenses and, in particular,
how tight are theoretical DP bounds.

Another defense mechanism, as mentioned, is Knowledge
Distillation (KD) [21]. Papernot et al. [47] propose a defen-
sive distillation mechanism to effectively reduce the risks
for target models with respect to adversarial examples. She-
jwalkar and Houmansadr [52] reveal that distillation can re-
duce the gap between the posteriors of members and non-
members, thus protecting membership privacy. In our exper-
iments, we show that distillation is indeed effective against
certain target models supported by ML-DOCTOR; however,
it cannot defend against other types of inference attacks.

Risk Assessment Tools. Finally, researchers have recently
developed a number of software tools to measure the potential
security/privacy risks of ML models. Ling et al. [32] propose
DEEPSEC, a security analysis system to evaluate different
adversarial example attacks and defenses. Another system

for adversarial examples is CleverHans [44]. Pang et al. [42]
introduce TROJANZOO, which focuses on backdoor attacks.

Closer to our work is ML Privacy Meter [36], which jointly
considers membership inference attacks in both black-box and
white-box settings. Unlike ML Privacy Meter, which focuses
on membership inference only, ML-DOCTOR considers four
types of inference attacks simultaneously. In addition, we rely
on ML-DOCTOR to perform a comprehensive analysis for all
these inference attacks.

9 Conclusion
In this paper, we performed the first holistic analysis of privacy
risks caused by inference attacks against machine learning
models. We established a taxonomy of threat models for four
types of inference attacks, including membership inference,
model inversion, attribute inference, and model stealing. We
conducted an extensive measurement study, over five model
architectures, and four datasets, of both attacks and defenses.
Among other things, we found that the complexity of the train-
ing dataset plays an important role in the attack’s performance,
while the effectiveness of model stealing and membership in-
ference attacks are negatively correlated. We also showed
that defenses such as DP-SGD and KD could only hope to
mitigate some of the inference attacks.

We integrated all the attacks and defenses into a re-usable,
modular software called ML-DOCTOR, which can be used in
various scenarios. For instance, an ML model owner can use
ML-DOCTOR to evaluate the model’s inference risks before
deploying it in the real world. We are also confident that ML-
DOCTOR will serve as a benchmark tool to facilitate future
research on inference attacks and defenses.

Currently, ML-DOCTOR concentrates on image classifica-
tion models, as image classification is the most popular ML
application. Researchers have demonstrated that inference
attacks can be successfully launched against other types of
ML models, such as language models [55, 56], generative
models [6, 16], and graph-based models [18], as well as other
training paradigms, such as federated learning [35]. We plan
to extend ML-DOCTOR to support a broader range of ML
application scenarios. In addition, we will explore other gen-
eral defense mechanisms, such as training target models with
noisy data or GAN-generated data.

Finally, while ML-DOCTOR is designed for inference at-
tacks, we plan to integrate tools [32, 42, 44] geared to eval-
uate risks aimed to jeopardize models’ functionality, e.g.,
adversarial examples, data poisoning, etc., thus providing a
one-stop-shop toward enabling secure and trustworthy AI.
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A Additional Experimental Results
In this appendix, we report plots for additional experiments as men-
tioned throughout the paper.



Figure 10: Visualization of model inversion (AlexNet trained on UTKFace). The left column depicts two samples reconstructed using [12],
the middle one using [65], while the right column reports two samples from the target model’s training dataset. The left column images are
normalized, black indicating pixels’ value in reconstructed images are close to 0. Note that similar results are shown by Zhang et al. [65].
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Figure 11: F1 score of membership inference attacks (MemInf) under different threat models, datasets, and target model architectures.
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Figure 12: AUC score of membership inference attacks (MemInf) under different threat models, datasets, and target model architectures.
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Figure 13: ROC curve of membership inference attacks (MemInf) under different threat models on CelebA.
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Figure 14: ROC curve of membership inference attacks (MemInf) under different threat models on FMNIST.
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Figure 15: ROC curve of membership inference attacks (MemInf) under different threat models on STL10.
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Figure 16: ROC curve of membership inference attacks (MemInf) under different threat models on UTKFace.
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Figure 17: Macro-F1 score of model inversion attacks (ModInv) under different datasets and target model architectures.
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Figure 18: F1 score of attribute inference attacks (AttrInf) under different threat models, datasets, and target model architectures. Note that we
report F1 score for UTKFace and macro-F1 score for CelebA.
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Figure 19: ROC curve of attribute inference attacks (AttrInf) on UTKFace under different threat models and target model architectures.
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Figure 20: Accuracy of model stealing attacks (ModSteal) under different threat models, datasets, and target model architectures.
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Figure 21: The relation between different attacks under the same threat model. For MemInf, we use AUC score, for ModInv, macro-F1, and
for ModSteal, accuracy.
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